
1

Logical Languages
part 1
2020

Instructor: Odelia Schwartz
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Programming paradigms

§ Imperative

§ Functional

§ Logical 

Logical programs: declarative rather than procedural
Only desired results (and collections of facts and rules)
specified, rather than detailed procedure for producing
Results

Syntax and semantics very different from imperative
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Towards logical languages: applications

§ Relational Database Management Systems 
e.g., Structured Query Database (SQL) is non
procedural (tables of information; relations
between tables)

§ Expert systems
Designed to emulate user expertise; lots of facts
and relations in databases. Use inference rules to
infer new facts. Example: with Prolog
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Towards logical languages: applications

Fairly recent example: IBM Watson won jeopardy 
challenge

https://www.cs.miami.edu/home/odelia/teaching/csc419_spring20/syllabus/IBM_Watson_Prolog.pdf

Natural Language Processing 
With Prolog in the IBM Watson 
System 
Adam Lally
IBM Thomas J. Watson Research Center 
Paul Fodor Stony Brook University 
24 May 2011 

https://www.youtube.com/watch?v=P18EdAKuC1U
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Formal logic and intro to predicate calculus

§ Before we look at Prolog

§ We will talk about formal logic…
this class 
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Formal logic and intro to predicate calculus

§ Proposition?
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Formal logic and intro to predicate calculus

§ Proposition: Logical statement that may or may
not be true. Consists of objects and relationships
amongst objects
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Formal logic and intro to predicate calculus

§ Proposition: Logical statement that may or may
not be true. Consists of objects and relationships
amongst objects

We check validity of propositions through formal
logic
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Formal logic and intro to predicate calculus

§ Symbolic logic used to:

Ø Express propositions
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Formal logic and intro to predicate calculus

§ Symbolic logic used to:

Ø Express propositions
Ø Relationships between propositions
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Formal logic and intro to predicate calculus

§ Symbolic logic used to:

Ø Express propositions
Ø Relationships between propositions
Ø How to infer new propositions from others 

assumed true
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Formal logic and intro to predicate calculus

§ Close relation between formal logic and mathematics

Ø Axioms of number and set theory are initial
propositions, assumed true

Ø Theorems and additional propositions can be
inferred from initial set
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Formal logic and intro to predicate calculus

§ Propositions

Examples:

class(csc419)
year(2020)
location(zoom)
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Formal logic and intro to predicate calculus

§ Propositions

Examples:

class(csc419)
year(2020)
location(zoom)

like(odelia, python)
like(michael, elixir)
like(David,haskell)
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Formal logic and intro to predicate calculus

§ Propositions can be stated in two forms:

Ø Fact: proposition assumed to be true
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Formal logic and intro to predicate calculus

§ Propositions can be stated in two forms:

Ø Fact: proposition assumed to be true
Ø Query: truth of proposition to be determined
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Formal logic and intro to predicate calculus

§ Compound proposition

Ø Two or more atomic propositions
Ø Propositions connected by operators
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Formal logic and intro to predicate calculus

§ Compound proposition

Ø Two or more atomic propositions
Ø Propositions connected by operators
Ø What logical operators?
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Formal logic and intro to predicate calculus

§ Logical operators

716      Chapter 16  Logic Programming Languages

to the two previous propositions, then the relation man would have 
two distinct elements, {jake} and {fred}. All of the simple terms in these 
 propositions—man, jake, like, bob, and steak—are constants. Note that 
these propositions have no intrinsic semantics. They mean whatever we 
want  them to mean. For example, the second example may mean that 
bob likes steak, or that steak likes bob, or that bob is in some way similar 
to a steak.

Propositions can be stated in two modes: one in which the proposition is 
defined to be true, and one in which the truth of the proposition is something 
that is to be determined. In other words, propositions either can be facts or 
queries. The example propositions above could be either.

Compound propositions have two or more atomic propositions, which 
are connected by logical connectors, or operators, in the same way com-
pound logic expressions are constructed in imperative languages. The names, 
symbols, and meanings of the predicate calculus logical connectors are as 
follows:

Name Symbol Example Meaning
negation ⫎ ⫎ a not a
conjunction ¨ a ¨ b a and b
disjunction ∪ a ∪ b a or b
equivalence K a K b a is equivalent to b
implication ⊃ a ⊃ b a implies b

⊂ a ⊂ b b implies a

The following are examples of compound propositions:

a ¨ b ⊃ c
a ¨ ⫎ b ⊃ d

The ⫎ operator has the highest precedence. The operators ¨ ,  ∪, and K  
all have higher precedence than ⊃ and ⊂ . So, the second example above is 
equivalent to

(a ¨ (⫎  b)) ⊃ d

Variables can appear in propositions but only when introduced by spe-
cial symbols called quantifiers. Predicate calculus includes two quantifiers, as 
described below, where X is a variable and P is a proposition:

Name Example Meaning
universal 5 X.P For all X, P is true.
existential E X.P There exists a value of X such 

that P is true.
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Formal logic and intro to predicate calculus

§ Logical operators

716      Chapter 16  Logic Programming Languages

to the two previous propositions, then the relation man would have 
two distinct elements, {jake} and {fred}. All of the simple terms in these 
 propositions—man, jake, like, bob, and steak—are constants. Note that 
these propositions have no intrinsic semantics. They mean whatever we 
want  them to mean. For example, the second example may mean that 
bob likes steak, or that steak likes bob, or that bob is in some way similar 
to a steak.

Propositions can be stated in two modes: one in which the proposition is 
defined to be true, and one in which the truth of the proposition is something 
that is to be determined. In other words, propositions either can be facts or 
queries. The example propositions above could be either.

Compound propositions have two or more atomic propositions, which 
are connected by logical connectors, or operators, in the same way com-
pound logic expressions are constructed in imperative languages. The names, 
symbols, and meanings of the predicate calculus logical connectors are as 
follows:

Name Symbol Example Meaning
negation ⫎ ⫎ a not a
conjunction ¨ a ¨ b a and b
disjunction ∪ a ∪ b a or b
equivalence K a K b a is equivalent to b
implication ⊃ a ⊃ b a implies b

⊂ a ⊂ b b implies a

The following are examples of compound propositions:

a ¨ b ⊃ c
a ¨ ⫎ b ⊃ d

The ⫎ operator has the highest precedence. The operators ¨ ,  ∪, and K  
all have higher precedence than ⊃ and ⊂ . So, the second example above is 
equivalent to

(a ¨ (⫎  b)) ⊃ d

Variables can appear in propositions but only when introduced by spe-
cial symbols called quantifiers. Predicate calculus includes two quantifiers, as 
described below, where X is a variable and P is a proposition:

Name Example Meaning
universal 5 X.P For all X, P is true.
existential E X.P There exists a value of X such 

that P is true.
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Formal logic and intro to predicate calculus

§ Logical operators

716      Chapter 16  Logic Programming Languages

to the two previous propositions, then the relation man would have 
two distinct elements, {jake} and {fred}. All of the simple terms in these 
 propositions—man, jake, like, bob, and steak—are constants. Note that 
these propositions have no intrinsic semantics. They mean whatever we 
want  them to mean. For example, the second example may mean that 
bob likes steak, or that steak likes bob, or that bob is in some way similar 
to a steak.

Propositions can be stated in two modes: one in which the proposition is 
defined to be true, and one in which the truth of the proposition is something 
that is to be determined. In other words, propositions either can be facts or 
queries. The example propositions above could be either.

Compound propositions have two or more atomic propositions, which 
are connected by logical connectors, or operators, in the same way com-
pound logic expressions are constructed in imperative languages. The names, 
symbols, and meanings of the predicate calculus logical connectors are as 
follows:

Name Symbol Example Meaning
negation ⫎ ⫎ a not a
conjunction ¨ a ¨ b a and b
disjunction ∪ a ∪ b a or b
equivalence K a K b a is equivalent to b
implication ⊃ a ⊃ b a implies b

⊂ a ⊂ b b implies a

The following are examples of compound propositions:

a ¨ b ⊃ c
a ¨ ⫎ b ⊃ d

The ⫎ operator has the highest precedence. The operators ¨ ,  ∪, and K  
all have higher precedence than ⊃ and ⊂ . So, the second example above is 
equivalent to

(a ¨ (⫎  b)) ⊃ d

Variables can appear in propositions but only when introduced by spe-
cial symbols called quantifiers. Predicate calculus includes two quantifiers, as 
described below, where X is a variable and P is a proposition:

Name Example Meaning
universal 5 X.P For all X, P is true.
existential E X.P There exists a value of X such 

that P is true.

Identical truth table
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Formal logic and intro to predicate calculus

§ Logical operators

716      Chapter 16  Logic Programming Languages

to the two previous propositions, then the relation man would have 
two distinct elements, {jake} and {fred}. All of the simple terms in these 
 propositions—man, jake, like, bob, and steak—are constants. Note that 
these propositions have no intrinsic semantics. They mean whatever we 
want  them to mean. For example, the second example may mean that 
bob likes steak, or that steak likes bob, or that bob is in some way similar 
to a steak.

Propositions can be stated in two modes: one in which the proposition is 
defined to be true, and one in which the truth of the proposition is something 
that is to be determined. In other words, propositions either can be facts or 
queries. The example propositions above could be either.

Compound propositions have two or more atomic propositions, which 
are connected by logical connectors, or operators, in the same way com-
pound logic expressions are constructed in imperative languages. The names, 
symbols, and meanings of the predicate calculus logical connectors are as 
follows:

Name Symbol Example Meaning
negation ⫎ ⫎ a not a
conjunction ¨ a ¨ b a and b
disjunction ∪ a ∪ b a or b
equivalence K a K b a is equivalent to b
implication ⊃ a ⊃ b a implies b

⊂ a ⊂ b b implies a

The following are examples of compound propositions:

a ¨ b ⊃ c
a ¨ ⫎ b ⊃ d

The ⫎ operator has the highest precedence. The operators ¨ ,  ∪, and K  
all have higher precedence than ⊃ and ⊂ . So, the second example above is 
equivalent to

(a ¨ (⫎  b)) ⊃ d

Variables can appear in propositions but only when introduced by spe-
cial symbols called quantifiers. Predicate calculus includes two quantifiers, as 
described below, where X is a variable and P is a proposition:

Name Example Meaning
universal 5 X.P For all X, P is true.
existential E X.P There exists a value of X such 

that P is true.

What does implication mean?
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Formal logic and intro to predicate calculus

§ Implication

716      Chapter 16  Logic Programming Languages

to the two previous propositions, then the relation man would have 
two distinct elements, {jake} and {fred}. All of the simple terms in these 
 propositions—man, jake, like, bob, and steak—are constants. Note that 
these propositions have no intrinsic semantics. They mean whatever we 
want  them to mean. For example, the second example may mean that 
bob likes steak, or that steak likes bob, or that bob is in some way similar 
to a steak.

Propositions can be stated in two modes: one in which the proposition is 
defined to be true, and one in which the truth of the proposition is something 
that is to be determined. In other words, propositions either can be facts or 
queries. The example propositions above could be either.

Compound propositions have two or more atomic propositions, which 
are connected by logical connectors, or operators, in the same way com-
pound logic expressions are constructed in imperative languages. The names, 
symbols, and meanings of the predicate calculus logical connectors are as 
follows:

Name Symbol Example Meaning
negation ⫎ ⫎ a not a
conjunction ¨ a ¨ b a and b
disjunction ∪ a ∪ b a or b
equivalence K a K b a is equivalent to b
implication ⊃ a ⊃ b a implies b

⊂ a ⊂ b b implies a

The following are examples of compound propositions:

a ¨ b ⊃ c
a ¨ ⫎ b ⊃ d

The ⫎ operator has the highest precedence. The operators ¨ ,  ∪, and K  
all have higher precedence than ⊃ and ⊂ . So, the second example above is 
equivalent to

(a ¨ (⫎  b)) ⊃ d

Variables can appear in propositions but only when introduced by spe-
cial symbols called quantifiers. Predicate calculus includes two quantifiers, as 
described below, where X is a variable and P is a proposition:

Name Example Meaning
universal 5 X.P For all X, P is true.
existential E X.P There exists a value of X such 

that P is true.

a implies b:
§ if a is true then b is true
§ if a is false, that can imply anything

Example?
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Formal logic and intro to predicate calculus

§ Implication

716      Chapter 16  Logic Programming Languages

to the two previous propositions, then the relation man would have 
two distinct elements, {jake} and {fred}. All of the simple terms in these 
 propositions—man, jake, like, bob, and steak—are constants. Note that 
these propositions have no intrinsic semantics. They mean whatever we 
want  them to mean. For example, the second example may mean that 
bob likes steak, or that steak likes bob, or that bob is in some way similar 
to a steak.

Propositions can be stated in two modes: one in which the proposition is 
defined to be true, and one in which the truth of the proposition is something 
that is to be determined. In other words, propositions either can be facts or 
queries. The example propositions above could be either.

Compound propositions have two or more atomic propositions, which 
are connected by logical connectors, or operators, in the same way com-
pound logic expressions are constructed in imperative languages. The names, 
symbols, and meanings of the predicate calculus logical connectors are as 
follows:

Name Symbol Example Meaning
negation ⫎ ⫎ a not a
conjunction ¨ a ¨ b a and b
disjunction ∪ a ∪ b a or b
equivalence K a K b a is equivalent to b
implication ⊃ a ⊃ b a implies b

⊂ a ⊂ b b implies a

The following are examples of compound propositions:

a ¨ b ⊃ c
a ¨ ⫎ b ⊃ d

The ⫎ operator has the highest precedence. The operators ¨ ,  ∪, and K  
all have higher precedence than ⊃ and ⊂ . So, the second example above is 
equivalent to

(a ¨ (⫎  b)) ⊃ d

Variables can appear in propositions but only when introduced by spe-
cial symbols called quantifiers. Predicate calculus includes two quantifiers, as 
described below, where X is a variable and P is a proposition:

Name Example Meaning
universal 5 X.P For all X, P is true.
existential E X.P There exists a value of X such 

that P is true.

a implies b:
§ if a is true then b is true
§ if a is false, that can imply anything

Example?
§ if you know your functional languages, you will

easily land an internship
§ if you don’t know your functional languages, you

may either easily land an internship or you may not
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Formal logic and intro to predicate calculus

§ Implication
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to the two previous propositions, then the relation man would have 
two distinct elements, {jake} and {fred}. All of the simple terms in these 
 propositions—man, jake, like, bob, and steak—are constants. Note that 
these propositions have no intrinsic semantics. They mean whatever we 
want  them to mean. For example, the second example may mean that 
bob likes steak, or that steak likes bob, or that bob is in some way similar 
to a steak.

Propositions can be stated in two modes: one in which the proposition is 
defined to be true, and one in which the truth of the proposition is something 
that is to be determined. In other words, propositions either can be facts or 
queries. The example propositions above could be either.

Compound propositions have two or more atomic propositions, which 
are connected by logical connectors, or operators, in the same way com-
pound logic expressions are constructed in imperative languages. The names, 
symbols, and meanings of the predicate calculus logical connectors are as 
follows:

Name Symbol Example Meaning
negation ⫎ ⫎ a not a
conjunction ¨ a ¨ b a and b
disjunction ∪ a ∪ b a or b
equivalence K a K b a is equivalent to b
implication ⊃ a ⊃ b a implies b

⊂ a ⊂ b b implies a

The following are examples of compound propositions:

a ¨ b ⊃ c
a ¨ ⫎ b ⊃ d

The ⫎ operator has the highest precedence. The operators ¨ ,  ∪, and K  
all have higher precedence than ⊃ and ⊂ . So, the second example above is 
equivalent to

(a ¨ (⫎  b)) ⊃ d

Variables can appear in propositions but only when introduced by spe-
cial symbols called quantifiers. Predicate calculus includes two quantifiers, as 
described below, where X is a variable and P is a proposition:

Name Example Meaning
universal 5 X.P For all X, P is true.
existential E X.P There exists a value of X such 

that P is true.

a implies b:
§ if a is true then b is true
§ if a is false, that can imply anything

Example?
also, collie implies dog…
dog implies mammal…
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Formal logic and intro to predicate calculus

§ Precedence order
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to the two previous propositions, then the relation man would have 
two distinct elements, {jake} and {fred}. All of the simple terms in these 
 propositions—man, jake, like, bob, and steak—are constants. Note that 
these propositions have no intrinsic semantics. They mean whatever we 
want  them to mean. For example, the second example may mean that 
bob likes steak, or that steak likes bob, or that bob is in some way similar 
to a steak.

Propositions can be stated in two modes: one in which the proposition is 
defined to be true, and one in which the truth of the proposition is something 
that is to be determined. In other words, propositions either can be facts or 
queries. The example propositions above could be either.

Compound propositions have two or more atomic propositions, which 
are connected by logical connectors, or operators, in the same way com-
pound logic expressions are constructed in imperative languages. The names, 
symbols, and meanings of the predicate calculus logical connectors are as 
follows:

Name Symbol Example Meaning
negation ⫎ ⫎ a not a
conjunction ¨ a ¨ b a and b
disjunction ∪ a ∪ b a or b
equivalence K a K b a is equivalent to b
implication ⊃ a ⊃ b a implies b

⊂ a ⊂ b b implies a

The following are examples of compound propositions:

a ¨ b ⊃ c
a ¨ ⫎ b ⊃ d

The ⫎ operator has the highest precedence. The operators ¨ ,  ∪, and K  
all have higher precedence than ⊃ and ⊂ . So, the second example above is 
equivalent to

(a ¨ (⫎  b)) ⊃ d

Variables can appear in propositions but only when introduced by spe-
cial symbols called quantifiers. Predicate calculus includes two quantifiers, as 
described below, where X is a variable and P is a proposition:

Name Example Meaning
universal 5 X.P For all X, P is true.
existential E X.P There exists a value of X such 

that P is true.
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to the two previous propositions, then the relation man would have 
two distinct elements, {jake} and {fred}. All of the simple terms in these 
 propositions—man, jake, like, bob, and steak—are constants. Note that 
these propositions have no intrinsic semantics. They mean whatever we 
want  them to mean. For example, the second example may mean that 
bob likes steak, or that steak likes bob, or that bob is in some way similar 
to a steak.

Propositions can be stated in two modes: one in which the proposition is 
defined to be true, and one in which the truth of the proposition is something 
that is to be determined. In other words, propositions either can be facts or 
queries. The example propositions above could be either.

Compound propositions have two or more atomic propositions, which 
are connected by logical connectors, or operators, in the same way com-
pound logic expressions are constructed in imperative languages. The names, 
symbols, and meanings of the predicate calculus logical connectors are as 
follows:

Name Symbol Example Meaning
negation ⫎ ⫎ a not a
conjunction ¨ a ¨ b a and b
disjunction ∪ a ∪ b a or b
equivalence K a K b a is equivalent to b
implication ⊃ a ⊃ b a implies b

⊂ a ⊂ b b implies a

The following are examples of compound propositions:

a ¨ b ⊃ c
a ¨ ⫎ b ⊃ d

The ⫎ operator has the highest precedence. The operators ¨ ,  ∪, and K  
all have higher precedence than ⊃ and ⊂ . So, the second example above is 
equivalent to

(a ¨ (⫎  b)) ⊃ d

Variables can appear in propositions but only when introduced by spe-
cial symbols called quantifiers. Predicate calculus includes two quantifiers, as 
described below, where X is a variable and P is a proposition:

Name Example Meaning
universal 5 X.P For all X, P is true.
existential E X.P There exists a value of X such 

that P is true.
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to the two previous propositions, then the relation man would have 
two distinct elements, {jake} and {fred}. All of the simple terms in these 
 propositions—man, jake, like, bob, and steak—are constants. Note that 
these propositions have no intrinsic semantics. They mean whatever we 
want  them to mean. For example, the second example may mean that 
bob likes steak, or that steak likes bob, or that bob is in some way similar 
to a steak.

Propositions can be stated in two modes: one in which the proposition is 
defined to be true, and one in which the truth of the proposition is something 
that is to be determined. In other words, propositions either can be facts or 
queries. The example propositions above could be either.

Compound propositions have two or more atomic propositions, which 
are connected by logical connectors, or operators, in the same way com-
pound logic expressions are constructed in imperative languages. The names, 
symbols, and meanings of the predicate calculus logical connectors are as 
follows:

Name Symbol Example Meaning
negation ⫎ ⫎ a not a
conjunction ¨ a ¨ b a and b
disjunction ∪ a ∪ b a or b
equivalence K a K b a is equivalent to b
implication ⊃ a ⊃ b a implies b

⊂ a ⊂ b b implies a

The following are examples of compound propositions:

a ¨ b ⊃ c
a ¨ ⫎ b ⊃ d

The ⫎ operator has the highest precedence. The operators ¨ ,  ∪, and K  
all have higher precedence than ⊃ and ⊂ . So, the second example above is 
equivalent to

(a ¨ (⫎  b)) ⊃ d

Variables can appear in propositions but only when introduced by spe-
cial symbols called quantifiers. Predicate calculus includes two quantifiers, as 
described below, where X is a variable and P is a proposition:

Name Example Meaning
universal 5 X.P For all X, P is true.
existential E X.P There exists a value of X such 

that P is true.
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to the two previous propositions, then the relation man would have 
two distinct elements, {jake} and {fred}. All of the simple terms in these 
 propositions—man, jake, like, bob, and steak—are constants. Note that 
these propositions have no intrinsic semantics. They mean whatever we 
want  them to mean. For example, the second example may mean that 
bob likes steak, or that steak likes bob, or that bob is in some way similar 
to a steak.

Propositions can be stated in two modes: one in which the proposition is 
defined to be true, and one in which the truth of the proposition is something 
that is to be determined. In other words, propositions either can be facts or 
queries. The example propositions above could be either.

Compound propositions have two or more atomic propositions, which 
are connected by logical connectors, or operators, in the same way com-
pound logic expressions are constructed in imperative languages. The names, 
symbols, and meanings of the predicate calculus logical connectors are as 
follows:

Name Symbol Example Meaning
negation ⫎ ⫎ a not a
conjunction ¨ a ¨ b a and b
disjunction ∪ a ∪ b a or b
equivalence K a K b a is equivalent to b
implication ⊃ a ⊃ b a implies b

⊂ a ⊂ b b implies a

The following are examples of compound propositions:

a ¨ b ⊃ c
a ¨ ⫎ b ⊃ d

The ⫎ operator has the highest precedence. The operators ¨ ,  ∪, and K  
all have higher precedence than ⊃ and ⊂ . So, the second example above is 
equivalent to

(a ¨ (⫎  b)) ⊃ d

Variables can appear in propositions but only when introduced by spe-
cial symbols called quantifiers. Predicate calculus includes two quantifiers, as 
described below, where X is a variable and P is a proposition:

Name Example Meaning
universal 5 X.P For all X, P is true.
existential E X.P There exists a value of X such 

that P is true.
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to the two previous propositions, then the relation man would have 
two distinct elements, {jake} and {fred}. All of the simple terms in these 
 propositions—man, jake, like, bob, and steak—are constants. Note that 
these propositions have no intrinsic semantics. They mean whatever we 
want  them to mean. For example, the second example may mean that 
bob likes steak, or that steak likes bob, or that bob is in some way similar 
to a steak.

Propositions can be stated in two modes: one in which the proposition is 
defined to be true, and one in which the truth of the proposition is something 
that is to be determined. In other words, propositions either can be facts or 
queries. The example propositions above could be either.

Compound propositions have two or more atomic propositions, which 
are connected by logical connectors, or operators, in the same way com-
pound logic expressions are constructed in imperative languages. The names, 
symbols, and meanings of the predicate calculus logical connectors are as 
follows:

Name Symbol Example Meaning
negation ⫎ ⫎ a not a
conjunction ¨ a ¨ b a and b
disjunction ∪ a ∪ b a or b
equivalence K a K b a is equivalent to b
implication ⊃ a ⊃ b a implies b

⊂ a ⊂ b b implies a

The following are examples of compound propositions:

a ¨ b ⊃ c
a ¨ ⫎ b ⊃ d

The ⫎ operator has the highest precedence. The operators ¨ ,  ∪, and K  
all have higher precedence than ⊃ and ⊂ . So, the second example above is 
equivalent to

(a ¨ (⫎  b)) ⊃ d

Variables can appear in propositions but only when introduced by spe-
cial symbols called quantifiers. Predicate calculus includes two quantifiers, as 
described below, where X is a variable and P is a proposition:

Name Example Meaning
universal 5 X.P For all X, P is true.
existential E X.P There exists a value of X such 

that P is true.
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to the two previous propositions, then the relation man would have 
two distinct elements, {jake} and {fred}. All of the simple terms in these 
 propositions—man, jake, like, bob, and steak—are constants. Note that 
these propositions have no intrinsic semantics. They mean whatever we 
want  them to mean. For example, the second example may mean that 
bob likes steak, or that steak likes bob, or that bob is in some way similar 
to a steak.

Propositions can be stated in two modes: one in which the proposition is 
defined to be true, and one in which the truth of the proposition is something 
that is to be determined. In other words, propositions either can be facts or 
queries. The example propositions above could be either.

Compound propositions have two or more atomic propositions, which 
are connected by logical connectors, or operators, in the same way com-
pound logic expressions are constructed in imperative languages. The names, 
symbols, and meanings of the predicate calculus logical connectors are as 
follows:

Name Symbol Example Meaning
negation ⫎ ⫎ a not a
conjunction ¨ a ¨ b a and b
disjunction ∪ a ∪ b a or b
equivalence K a K b a is equivalent to b
implication ⊃ a ⊃ b a implies b

⊂ a ⊂ b b implies a

The following are examples of compound propositions:

a ¨ b ⊃ c
a ¨ ⫎ b ⊃ d

The ⫎ operator has the highest precedence. The operators ¨ ,  ∪, and K  
all have higher precedence than ⊃ and ⊂ . So, the second example above is 
equivalent to

(a ¨ (⫎  b)) ⊃ d

Variables can appear in propositions but only when introduced by spe-
cial symbols called quantifiers. Predicate calculus includes two quantifiers, as 
described below, where X is a variable and P is a proposition:

Name Example Meaning
universal 5 X.P For all X, P is true.
existential E X.P There exists a value of X such 

that P is true.
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Formal logic and intro to predicate calculus

§ Compound statements
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to the two previous propositions, then the relation man would have 
two distinct elements, {jake} and {fred}. All of the simple terms in these 
 propositions—man, jake, like, bob, and steak—are constants. Note that 
these propositions have no intrinsic semantics. They mean whatever we 
want  them to mean. For example, the second example may mean that 
bob likes steak, or that steak likes bob, or that bob is in some way similar 
to a steak.

Propositions can be stated in two modes: one in which the proposition is 
defined to be true, and one in which the truth of the proposition is something 
that is to be determined. In other words, propositions either can be facts or 
queries. The example propositions above could be either.

Compound propositions have two or more atomic propositions, which 
are connected by logical connectors, or operators, in the same way com-
pound logic expressions are constructed in imperative languages. The names, 
symbols, and meanings of the predicate calculus logical connectors are as 
follows:

Name Symbol Example Meaning
negation ⫎ ⫎ a not a
conjunction ¨ a ¨ b a and b
disjunction ∪ a ∪ b a or b
equivalence K a K b a is equivalent to b
implication ⊃ a ⊃ b a implies b

⊂ a ⊂ b b implies a

The following are examples of compound propositions:

a ¨ b ⊃ c
a ¨ ⫎ b ⊃ d

The ⫎ operator has the highest precedence. The operators ¨ ,  ∪, and K  
all have higher precedence than ⊃ and ⊂ . So, the second example above is 
equivalent to

(a ¨ (⫎  b)) ⊃ d

Variables can appear in propositions but only when introduced by spe-
cial symbols called quantifiers. Predicate calculus includes two quantifiers, as 
described below, where X is a variable and P is a proposition:

Name Example Meaning
universal 5 X.P For all X, P is true.
existential E X.P There exists a value of X such 

that P is true.
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to the two previous propositions, then the relation man would have 
two distinct elements, {jake} and {fred}. All of the simple terms in these 
 propositions—man, jake, like, bob, and steak—are constants. Note that 
these propositions have no intrinsic semantics. They mean whatever we 
want  them to mean. For example, the second example may mean that 
bob likes steak, or that steak likes bob, or that bob is in some way similar 
to a steak.

Propositions can be stated in two modes: one in which the proposition is 
defined to be true, and one in which the truth of the proposition is something 
that is to be determined. In other words, propositions either can be facts or 
queries. The example propositions above could be either.

Compound propositions have two or more atomic propositions, which 
are connected by logical connectors, or operators, in the same way com-
pound logic expressions are constructed in imperative languages. The names, 
symbols, and meanings of the predicate calculus logical connectors are as 
follows:

Name Symbol Example Meaning
negation ⫎ ⫎ a not a
conjunction ¨ a ¨ b a and b
disjunction ∪ a ∪ b a or b
equivalence K a K b a is equivalent to b
implication ⊃ a ⊃ b a implies b

⊂ a ⊂ b b implies a

The following are examples of compound propositions:

a ¨ b ⊃ c
a ¨ ⫎ b ⊃ d

The ⫎ operator has the highest precedence. The operators ¨ ,  ∪, and K  
all have higher precedence than ⊃ and ⊂ . So, the second example above is 
equivalent to

(a ¨ (⫎  b)) ⊃ d

Variables can appear in propositions but only when introduced by spe-
cial symbols called quantifiers. Predicate calculus includes two quantifiers, as 
described below, where X is a variable and P is a proposition:

Name Example Meaning
universal 5 X.P For all X, P is true.
existential E X.P There exists a value of X such 

that P is true.

Based on precedence:
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to the two previous propositions, then the relation man would have 
two distinct elements, {jake} and {fred}. All of the simple terms in these 
 propositions—man, jake, like, bob, and steak—are constants. Note that 
these propositions have no intrinsic semantics. They mean whatever we 
want  them to mean. For example, the second example may mean that 
bob likes steak, or that steak likes bob, or that bob is in some way similar 
to a steak.

Propositions can be stated in two modes: one in which the proposition is 
defined to be true, and one in which the truth of the proposition is something 
that is to be determined. In other words, propositions either can be facts or 
queries. The example propositions above could be either.

Compound propositions have two or more atomic propositions, which 
are connected by logical connectors, or operators, in the same way com-
pound logic expressions are constructed in imperative languages. The names, 
symbols, and meanings of the predicate calculus logical connectors are as 
follows:

Name Symbol Example Meaning
negation ⫎ ⫎ a not a
conjunction ¨ a ¨ b a and b
disjunction ∪ a ∪ b a or b
equivalence K a K b a is equivalent to b
implication ⊃ a ⊃ b a implies b

⊂ a ⊂ b b implies a

The following are examples of compound propositions:

a ¨ b ⊃ c
a ¨ ⫎ b ⊃ d

The ⫎ operator has the highest precedence. The operators ¨ ,  ∪, and K  
all have higher precedence than ⊃ and ⊂ . So, the second example above is 
equivalent to

(a ¨ (⫎  b)) ⊃ d

Variables can appear in propositions but only when introduced by spe-
cial symbols called quantifiers. Predicate calculus includes two quantifiers, as 
described below, where X is a variable and P is a proposition:

Name Example Meaning
universal 5 X.P For all X, P is true.
existential E X.P There exists a value of X such 

that P is true.



29

Formal logic and intro to predicate calculus

§ For all, there exists…

716      Chapter 16  Logic Programming Languages

to the two previous propositions, then the relation man would have 
two distinct elements, {jake} and {fred}. All of the simple terms in these 
 propositions—man, jake, like, bob, and steak—are constants. Note that 
these propositions have no intrinsic semantics. They mean whatever we 
want  them to mean. For example, the second example may mean that 
bob likes steak, or that steak likes bob, or that bob is in some way similar 
to a steak.

Propositions can be stated in two modes: one in which the proposition is 
defined to be true, and one in which the truth of the proposition is something 
that is to be determined. In other words, propositions either can be facts or 
queries. The example propositions above could be either.

Compound propositions have two or more atomic propositions, which 
are connected by logical connectors, or operators, in the same way com-
pound logic expressions are constructed in imperative languages. The names, 
symbols, and meanings of the predicate calculus logical connectors are as 
follows:

Name Symbol Example Meaning
negation ⫎ ⫎ a not a
conjunction ¨ a ¨ b a and b
disjunction ∪ a ∪ b a or b
equivalence K a K b a is equivalent to b
implication ⊃ a ⊃ b a implies b

⊂ a ⊂ b b implies a

The following are examples of compound propositions:

a ¨ b ⊃ c
a ¨ ⫎ b ⊃ d

The ⫎ operator has the highest precedence. The operators ¨ ,  ∪, and K  
all have higher precedence than ⊃ and ⊂ . So, the second example above is 
equivalent to

(a ¨ (⫎  b)) ⊃ d

Variables can appear in propositions but only when introduced by spe-
cial symbols called quantifiers. Predicate calculus includes two quantifiers, as 
described below, where X is a variable and P is a proposition:

Name Example Meaning
universal 5 X.P For all X, P is true.
existential E X.P There exists a value of X such 

that P is true.
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to the two previous propositions, then the relation man would have 
two distinct elements, {jake} and {fred}. All of the simple terms in these 
 propositions—man, jake, like, bob, and steak—are constants. Note that 
these propositions have no intrinsic semantics. They mean whatever we 
want  them to mean. For example, the second example may mean that 
bob likes steak, or that steak likes bob, or that bob is in some way similar 
to a steak.

Propositions can be stated in two modes: one in which the proposition is 
defined to be true, and one in which the truth of the proposition is something 
that is to be determined. In other words, propositions either can be facts or 
queries. The example propositions above could be either.

Compound propositions have two or more atomic propositions, which 
are connected by logical connectors, or operators, in the same way com-
pound logic expressions are constructed in imperative languages. The names, 
symbols, and meanings of the predicate calculus logical connectors are as 
follows:

Name Symbol Example Meaning
negation ⫎ ⫎ a not a
conjunction ¨ a ¨ b a and b
disjunction ∪ a ∪ b a or b
equivalence K a K b a is equivalent to b
implication ⊃ a ⊃ b a implies b

⊂ a ⊂ b b implies a

The following are examples of compound propositions:

a ¨ b ⊃ c
a ¨ ⫎ b ⊃ d

The ⫎ operator has the highest precedence. The operators ¨ ,  ∪, and K  
all have higher precedence than ⊃ and ⊂ . So, the second example above is 
equivalent to

(a ¨ (⫎  b)) ⊃ d

Variables can appear in propositions but only when introduced by spe-
cial symbols called quantifiers. Predicate calculus includes two quantifiers, as 
described below, where X is a variable and P is a proposition:

Name Example Meaning
universal 5 X.P For all X, P is true.
existential E X.P There exists a value of X such 

that P is true.

Variables appear in propositions only as
quantifiers
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The period between X and P simply separates the variable from the proposi-
tion. For example, consider the following:

5X.(woman(X) ⊃ human(X))  
EX.(mother(mary, X) ¨  male(X))

The first of these propositions means that for any value of X, if X is a woman, 
then X is a human. The second means that there exists a value of X such that 
mary is the mother of X and X is a male; in other words, mary has a son. The 
scope of the universal and existential quantifiers is the atomic propositions to 
which they are attached. This scope can be extended using parentheses, as in 
the two compound propositions just described. So, the universal and existential 
quantifiers have higher precedence than any of the operators.

16.2.2 Clausal Form

We are discussing predicate calculus because it is the basis for logic program-
ming languages. As with other languages, logic languages are best in their sim-
plest form, meaning that redundancy should be minimized.

One problem with predicate calculus as we have described it thus far is that 
there are too many different ways of stating propositions that have the same 
meaning; that is, there is a great deal of redundancy. This is not such a problem 
for logicians, but if predicate calculus is to be used in an automated (comput-
erized) system, it is a serious problem. To simplify matters, a standard form 
for propositions is desirable. Clausal form, which is a relatively simple form of 
propositions, is one such standard form. All propositions can be expressed in 
clausal form. A proposition in clausal form has the following general syntax:

B1 ∪ B2 ∪ c ∪ Bn⊂ A1 ¨ A2 ¨ c ¨ Am

in which the A’s and B’s are terms. The meaning of this clausal form proposition 
is as follows: If all of the A’s are true, then at least one B is true. The primary 
characteristics of clausal form propositions are the following: Existential quan-
tifiers are not required; universal quantifiers are implicit in the use of variables 
in the atomic propositions; and no operators other than conjunction and dis-
junction are required. Also, conjunction and disjunction need appear only in 
the order shown in the general clausal form: disjunction on the left side and 
conjunction on the right side. All predicate calculus propositions can be algo-
rithmically converted to clausal form. Nilsson (1971) gives proof that this can 
be done, as well as a simple conversion algorithm for doing it.

The right side of a clausal form proposition is called the antecedent. The 
left side is called the consequent because it is the consequence of the truth of 
the antecedent. As examples of clausal form propositions, consider the following:

likes(bob, trout) ⊂  likes(bob, fish) ¨  fish(trout) 

(dog(x)     mammal(x))

16.2 A Brief Introduction to Predicate Calculus     717

The period between X and P simply separates the variable from the proposi-
tion. For example, consider the following:

5X.(woman(X) ⊃ human(X))  
EX.(mother(mary, X) ¨  male(X))

The first of these propositions means that for any value of X, if X is a woman, 
then X is a human. The second means that there exists a value of X such that 
mary is the mother of X and X is a male; in other words, mary has a son. The 
scope of the universal and existential quantifiers is the atomic propositions to 
which they are attached. This scope can be extended using parentheses, as in 
the two compound propositions just described. So, the universal and existential 
quantifiers have higher precedence than any of the operators.

16.2.2 Clausal Form

We are discussing predicate calculus because it is the basis for logic program-
ming languages. As with other languages, logic languages are best in their sim-
plest form, meaning that redundancy should be minimized.

One problem with predicate calculus as we have described it thus far is that 
there are too many different ways of stating propositions that have the same 
meaning; that is, there is a great deal of redundancy. This is not such a problem 
for logicians, but if predicate calculus is to be used in an automated (comput-
erized) system, it is a serious problem. To simplify matters, a standard form 
for propositions is desirable. Clausal form, which is a relatively simple form of 
propositions, is one such standard form. All propositions can be expressed in 
clausal form. A proposition in clausal form has the following general syntax:

B1 ∪ B2 ∪ c ∪ Bn⊂ A1 ¨ A2 ¨ c ¨ Am

in which the A’s and B’s are terms. The meaning of this clausal form proposition 
is as follows: If all of the A’s are true, then at least one B is true. The primary 
characteristics of clausal form propositions are the following: Existential quan-
tifiers are not required; universal quantifiers are implicit in the use of variables 
in the atomic propositions; and no operators other than conjunction and dis-
junction are required. Also, conjunction and disjunction need appear only in 
the order shown in the general clausal form: disjunction on the left side and 
conjunction on the right side. All predicate calculus propositions can be algo-
rithmically converted to clausal form. Nilsson (1971) gives proof that this can 
be done, as well as a simple conversion algorithm for doing it.

The right side of a clausal form proposition is called the antecedent. The 
left side is called the consequent because it is the consequence of the truth of 
the antecedent. As examples of clausal form propositions, consider the following:

likes(bob, trout) ⊂  likes(bob, fish) ¨  fish(trout) 



32

Formal logic and intro to predicate calculus

§ Examples:
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The period between X and P simply separates the variable from the proposi-
tion. For example, consider the following:

5X.(woman(X) ⊃ human(X))  
EX.(mother(mary, X) ¨  male(X))

The first of these propositions means that for any value of X, if X is a woman, 
then X is a human. The second means that there exists a value of X such that 
mary is the mother of X and X is a male; in other words, mary has a son. The 
scope of the universal and existential quantifiers is the atomic propositions to 
which they are attached. This scope can be extended using parentheses, as in 
the two compound propositions just described. So, the universal and existential 
quantifiers have higher precedence than any of the operators.

16.2.2 Clausal Form

We are discussing predicate calculus because it is the basis for logic program-
ming languages. As with other languages, logic languages are best in their sim-
plest form, meaning that redundancy should be minimized.

One problem with predicate calculus as we have described it thus far is that 
there are too many different ways of stating propositions that have the same 
meaning; that is, there is a great deal of redundancy. This is not such a problem 
for logicians, but if predicate calculus is to be used in an automated (comput-
erized) system, it is a serious problem. To simplify matters, a standard form 
for propositions is desirable. Clausal form, which is a relatively simple form of 
propositions, is one such standard form. All propositions can be expressed in 
clausal form. A proposition in clausal form has the following general syntax:

B1 ∪ B2 ∪ c ∪ Bn⊂ A1 ¨ A2 ¨ c ¨ Am

in which the A’s and B’s are terms. The meaning of this clausal form proposition 
is as follows: If all of the A’s are true, then at least one B is true. The primary 
characteristics of clausal form propositions are the following: Existential quan-
tifiers are not required; universal quantifiers are implicit in the use of variables 
in the atomic propositions; and no operators other than conjunction and dis-
junction are required. Also, conjunction and disjunction need appear only in 
the order shown in the general clausal form: disjunction on the left side and 
conjunction on the right side. All predicate calculus propositions can be algo-
rithmically converted to clausal form. Nilsson (1971) gives proof that this can 
be done, as well as a simple conversion algorithm for doing it.

The right side of a clausal form proposition is called the antecedent. The 
left side is called the consequent because it is the consequence of the truth of 
the antecedent. As examples of clausal form propositions, consider the following:

likes(bob, trout) ⊂  likes(bob, fish) ¨  fish(trout) 

(dog(x)     mammal(x))

16.2 A Brief Introduction to Predicate Calculus     717

The period between X and P simply separates the variable from the proposi-
tion. For example, consider the following:

5X.(woman(X) ⊃ human(X))  
EX.(mother(mary, X) ¨  male(X))

The first of these propositions means that for any value of X, if X is a woman, 
then X is a human. The second means that there exists a value of X such that 
mary is the mother of X and X is a male; in other words, mary has a son. The 
scope of the universal and existential quantifiers is the atomic propositions to 
which they are attached. This scope can be extended using parentheses, as in 
the two compound propositions just described. So, the universal and existential 
quantifiers have higher precedence than any of the operators.

16.2.2 Clausal Form

We are discussing predicate calculus because it is the basis for logic program-
ming languages. As with other languages, logic languages are best in their sim-
plest form, meaning that redundancy should be minimized.

One problem with predicate calculus as we have described it thus far is that 
there are too many different ways of stating propositions that have the same 
meaning; that is, there is a great deal of redundancy. This is not such a problem 
for logicians, but if predicate calculus is to be used in an automated (comput-
erized) system, it is a serious problem. To simplify matters, a standard form 
for propositions is desirable. Clausal form, which is a relatively simple form of 
propositions, is one such standard form. All propositions can be expressed in 
clausal form. A proposition in clausal form has the following general syntax:

B1 ∪ B2 ∪ c ∪ Bn⊂ A1 ¨ A2 ¨ c ¨ Am

in which the A’s and B’s are terms. The meaning of this clausal form proposition 
is as follows: If all of the A’s are true, then at least one B is true. The primary 
characteristics of clausal form propositions are the following: Existential quan-
tifiers are not required; universal quantifiers are implicit in the use of variables 
in the atomic propositions; and no operators other than conjunction and dis-
junction are required. Also, conjunction and disjunction need appear only in 
the order shown in the general clausal form: disjunction on the left side and 
conjunction on the right side. All predicate calculus propositions can be algo-
rithmically converted to clausal form. Nilsson (1971) gives proof that this can 
be done, as well as a simple conversion algorithm for doing it.

The right side of a clausal form proposition is called the antecedent. The 
left side is called the consequent because it is the consequence of the truth of 
the antecedent. As examples of clausal form propositions, consider the following:

likes(bob, trout) ⊂  likes(bob, fish) ¨  fish(trout) 

For any value of x, if x is a dog then x is 
a mammal
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The period between X and P simply separates the variable from the proposi-
tion. For example, consider the following:

5X.(woman(X) ⊃ human(X))  
EX.(mother(mary, X) ¨  male(X))

The first of these propositions means that for any value of X, if X is a woman, 
then X is a human. The second means that there exists a value of X such that 
mary is the mother of X and X is a male; in other words, mary has a son. The 
scope of the universal and existential quantifiers is the atomic propositions to 
which they are attached. This scope can be extended using parentheses, as in 
the two compound propositions just described. So, the universal and existential 
quantifiers have higher precedence than any of the operators.

16.2.2 Clausal Form

We are discussing predicate calculus because it is the basis for logic program-
ming languages. As with other languages, logic languages are best in their sim-
plest form, meaning that redundancy should be minimized.

One problem with predicate calculus as we have described it thus far is that 
there are too many different ways of stating propositions that have the same 
meaning; that is, there is a great deal of redundancy. This is not such a problem 
for logicians, but if predicate calculus is to be used in an automated (comput-
erized) system, it is a serious problem. To simplify matters, a standard form 
for propositions is desirable. Clausal form, which is a relatively simple form of 
propositions, is one such standard form. All propositions can be expressed in 
clausal form. A proposition in clausal form has the following general syntax:

B1 ∪ B2 ∪ c ∪ Bn⊂ A1 ¨ A2 ¨ c ¨ Am

in which the A’s and B’s are terms. The meaning of this clausal form proposition 
is as follows: If all of the A’s are true, then at least one B is true. The primary 
characteristics of clausal form propositions are the following: Existential quan-
tifiers are not required; universal quantifiers are implicit in the use of variables 
in the atomic propositions; and no operators other than conjunction and dis-
junction are required. Also, conjunction and disjunction need appear only in 
the order shown in the general clausal form: disjunction on the left side and 
conjunction on the right side. All predicate calculus propositions can be algo-
rithmically converted to clausal form. Nilsson (1971) gives proof that this can 
be done, as well as a simple conversion algorithm for doing it.

The right side of a clausal form proposition is called the antecedent. The 
left side is called the consequent because it is the consequence of the truth of 
the antecedent. As examples of clausal form propositions, consider the following:

likes(bob, trout) ⊂  likes(bob, fish) ¨  fish(trout) 
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There exists a value of X such that mary is the
mother of X and X is a male

16.2 A Brief Introduction to Predicate Calculus     717

The period between X and P simply separates the variable from the proposi-
tion. For example, consider the following:

5X.(woman(X) ⊃ human(X))  
EX.(mother(mary, X) ¨  male(X))

The first of these propositions means that for any value of X, if X is a woman, 
then X is a human. The second means that there exists a value of X such that 
mary is the mother of X and X is a male; in other words, mary has a son. The 
scope of the universal and existential quantifiers is the atomic propositions to 
which they are attached. This scope can be extended using parentheses, as in 
the two compound propositions just described. So, the universal and existential 
quantifiers have higher precedence than any of the operators.

16.2.2 Clausal Form

We are discussing predicate calculus because it is the basis for logic program-
ming languages. As with other languages, logic languages are best in their sim-
plest form, meaning that redundancy should be minimized.

One problem with predicate calculus as we have described it thus far is that 
there are too many different ways of stating propositions that have the same 
meaning; that is, there is a great deal of redundancy. This is not such a problem 
for logicians, but if predicate calculus is to be used in an automated (comput-
erized) system, it is a serious problem. To simplify matters, a standard form 
for propositions is desirable. Clausal form, which is a relatively simple form of 
propositions, is one such standard form. All propositions can be expressed in 
clausal form. A proposition in clausal form has the following general syntax:

B1 ∪ B2 ∪ c ∪ Bn⊂ A1 ¨ A2 ¨ c ¨ Am

in which the A’s and B’s are terms. The meaning of this clausal form proposition 
is as follows: If all of the A’s are true, then at least one B is true. The primary 
characteristics of clausal form propositions are the following: Existential quan-
tifiers are not required; universal quantifiers are implicit in the use of variables 
in the atomic propositions; and no operators other than conjunction and dis-
junction are required. Also, conjunction and disjunction need appear only in 
the order shown in the general clausal form: disjunction on the left side and 
conjunction on the right side. All predicate calculus propositions can be algo-
rithmically converted to clausal form. Nilsson (1971) gives proof that this can 
be done, as well as a simple conversion algorithm for doing it.

The right side of a clausal form proposition is called the antecedent. The 
left side is called the consequent because it is the consequence of the truth of 
the antecedent. As examples of clausal form propositions, consider the following:

likes(bob, trout) ⊂  likes(bob, fish) ¨  fish(trout) 
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There exists a value of X such that mary is the
mother of X and X is a male

In other words, mary has a son…

16.2 A Brief Introduction to Predicate Calculus     717

The period between X and P simply separates the variable from the proposi-
tion. For example, consider the following:

5X.(woman(X) ⊃ human(X))  
EX.(mother(mary, X) ¨  male(X))

The first of these propositions means that for any value of X, if X is a woman, 
then X is a human. The second means that there exists a value of X such that 
mary is the mother of X and X is a male; in other words, mary has a son. The 
scope of the universal and existential quantifiers is the atomic propositions to 
which they are attached. This scope can be extended using parentheses, as in 
the two compound propositions just described. So, the universal and existential 
quantifiers have higher precedence than any of the operators.

16.2.2 Clausal Form

We are discussing predicate calculus because it is the basis for logic program-
ming languages. As with other languages, logic languages are best in their sim-
plest form, meaning that redundancy should be minimized.

One problem with predicate calculus as we have described it thus far is that 
there are too many different ways of stating propositions that have the same 
meaning; that is, there is a great deal of redundancy. This is not such a problem 
for logicians, but if predicate calculus is to be used in an automated (comput-
erized) system, it is a serious problem. To simplify matters, a standard form 
for propositions is desirable. Clausal form, which is a relatively simple form of 
propositions, is one such standard form. All propositions can be expressed in 
clausal form. A proposition in clausal form has the following general syntax:

B1 ∪ B2 ∪ c ∪ Bn⊂ A1 ¨ A2 ¨ c ¨ Am

in which the A’s and B’s are terms. The meaning of this clausal form proposition 
is as follows: If all of the A’s are true, then at least one B is true. The primary 
characteristics of clausal form propositions are the following: Existential quan-
tifiers are not required; universal quantifiers are implicit in the use of variables 
in the atomic propositions; and no operators other than conjunction and dis-
junction are required. Also, conjunction and disjunction need appear only in 
the order shown in the general clausal form: disjunction on the left side and 
conjunction on the right side. All predicate calculus propositions can be algo-
rithmically converted to clausal form. Nilsson (1971) gives proof that this can 
be done, as well as a simple conversion algorithm for doing it.

The right side of a clausal form proposition is called the antecedent. The 
left side is called the consequent because it is the consequence of the truth of 
the antecedent. As examples of clausal form propositions, consider the following:

likes(bob, trout) ⊂  likes(bob, fish) ¨  fish(trout) 
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§ Clausal form

Ø There are too many ways to state the same thing
(e.g., propositions with the same meaning)

Ø Not so much a problem for humans, but for
computers a serious problem

Ø A standard form is desirable

Ø Clausal form is a relatively simple form of
propositions and is one such standard form
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§ All propositions can be expressed in clausal form

16.2 A Brief Introduction to Predicate Calculus     717

The period between X and P simply separates the variable from the proposi-
tion. For example, consider the following:

5X.(woman(X) ⊃ human(X))  
EX.(mother(mary, X) ¨  male(X))

The first of these propositions means that for any value of X, if X is a woman, 
then X is a human. The second means that there exists a value of X such that 
mary is the mother of X and X is a male; in other words, mary has a son. The 
scope of the universal and existential quantifiers is the atomic propositions to 
which they are attached. This scope can be extended using parentheses, as in 
the two compound propositions just described. So, the universal and existential 
quantifiers have higher precedence than any of the operators.

16.2.2 Clausal Form

We are discussing predicate calculus because it is the basis for logic program-
ming languages. As with other languages, logic languages are best in their sim-
plest form, meaning that redundancy should be minimized.

One problem with predicate calculus as we have described it thus far is that 
there are too many different ways of stating propositions that have the same 
meaning; that is, there is a great deal of redundancy. This is not such a problem 
for logicians, but if predicate calculus is to be used in an automated (comput-
erized) system, it is a serious problem. To simplify matters, a standard form 
for propositions is desirable. Clausal form, which is a relatively simple form of 
propositions, is one such standard form. All propositions can be expressed in 
clausal form. A proposition in clausal form has the following general syntax:

B1 ∪ B2 ∪ c ∪ Bn⊂ A1 ¨ A2 ¨ c ¨ Am

in which the A’s and B’s are terms. The meaning of this clausal form proposition 
is as follows: If all of the A’s are true, then at least one B is true. The primary 
characteristics of clausal form propositions are the following: Existential quan-
tifiers are not required; universal quantifiers are implicit in the use of variables 
in the atomic propositions; and no operators other than conjunction and dis-
junction are required. Also, conjunction and disjunction need appear only in 
the order shown in the general clausal form: disjunction on the left side and 
conjunction on the right side. All predicate calculus propositions can be algo-
rithmically converted to clausal form. Nilsson (1971) gives proof that this can 
be done, as well as a simple conversion algorithm for doing it.

The right side of a clausal form proposition is called the antecedent. The 
left side is called the consequent because it is the consequence of the truth of 
the antecedent. As examples of clausal form propositions, consider the following:

likes(bob, trout) ⊂  likes(bob, fish) ¨  fish(trout) 

Meaning??
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The period between X and P simply separates the variable from the proposi-
tion. For example, consider the following:

5X.(woman(X) ⊃ human(X))  
EX.(mother(mary, X) ¨  male(X))

The first of these propositions means that for any value of X, if X is a woman, 
then X is a human. The second means that there exists a value of X such that 
mary is the mother of X and X is a male; in other words, mary has a son. The 
scope of the universal and existential quantifiers is the atomic propositions to 
which they are attached. This scope can be extended using parentheses, as in 
the two compound propositions just described. So, the universal and existential 
quantifiers have higher precedence than any of the operators.

16.2.2 Clausal Form

We are discussing predicate calculus because it is the basis for logic program-
ming languages. As with other languages, logic languages are best in their sim-
plest form, meaning that redundancy should be minimized.

One problem with predicate calculus as we have described it thus far is that 
there are too many different ways of stating propositions that have the same 
meaning; that is, there is a great deal of redundancy. This is not such a problem 
for logicians, but if predicate calculus is to be used in an automated (comput-
erized) system, it is a serious problem. To simplify matters, a standard form 
for propositions is desirable. Clausal form, which is a relatively simple form of 
propositions, is one such standard form. All propositions can be expressed in 
clausal form. A proposition in clausal form has the following general syntax:

B1 ∪ B2 ∪ c ∪ Bn⊂ A1 ¨ A2 ¨ c ¨ Am

in which the A’s and B’s are terms. The meaning of this clausal form proposition 
is as follows: If all of the A’s are true, then at least one B is true. The primary 
characteristics of clausal form propositions are the following: Existential quan-
tifiers are not required; universal quantifiers are implicit in the use of variables 
in the atomic propositions; and no operators other than conjunction and dis-
junction are required. Also, conjunction and disjunction need appear only in 
the order shown in the general clausal form: disjunction on the left side and 
conjunction on the right side. All predicate calculus propositions can be algo-
rithmically converted to clausal form. Nilsson (1971) gives proof that this can 
be done, as well as a simple conversion algorithm for doing it.

The right side of a clausal form proposition is called the antecedent. The 
left side is called the consequent because it is the consequence of the truth of 
the antecedent. As examples of clausal form propositions, consider the following:

likes(bob, trout) ⊂  likes(bob, fish) ¨  fish(trout) 

Meaning??

Right side implies left side
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The period between X and P simply separates the variable from the proposi-
tion. For example, consider the following:

5X.(woman(X) ⊃ human(X))  
EX.(mother(mary, X) ¨  male(X))

The first of these propositions means that for any value of X, if X is a woman, 
then X is a human. The second means that there exists a value of X such that 
mary is the mother of X and X is a male; in other words, mary has a son. The 
scope of the universal and existential quantifiers is the atomic propositions to 
which they are attached. This scope can be extended using parentheses, as in 
the two compound propositions just described. So, the universal and existential 
quantifiers have higher precedence than any of the operators.

16.2.2 Clausal Form

We are discussing predicate calculus because it is the basis for logic program-
ming languages. As with other languages, logic languages are best in their sim-
plest form, meaning that redundancy should be minimized.

One problem with predicate calculus as we have described it thus far is that 
there are too many different ways of stating propositions that have the same 
meaning; that is, there is a great deal of redundancy. This is not such a problem 
for logicians, but if predicate calculus is to be used in an automated (comput-
erized) system, it is a serious problem. To simplify matters, a standard form 
for propositions is desirable. Clausal form, which is a relatively simple form of 
propositions, is one such standard form. All propositions can be expressed in 
clausal form. A proposition in clausal form has the following general syntax:

B1 ∪ B2 ∪ c ∪ Bn⊂ A1 ¨ A2 ¨ c ¨ Am

in which the A’s and B’s are terms. The meaning of this clausal form proposition 
is as follows: If all of the A’s are true, then at least one B is true. The primary 
characteristics of clausal form propositions are the following: Existential quan-
tifiers are not required; universal quantifiers are implicit in the use of variables 
in the atomic propositions; and no operators other than conjunction and dis-
junction are required. Also, conjunction and disjunction need appear only in 
the order shown in the general clausal form: disjunction on the left side and 
conjunction on the right side. All predicate calculus propositions can be algo-
rithmically converted to clausal form. Nilsson (1971) gives proof that this can 
be done, as well as a simple conversion algorithm for doing it.

The right side of a clausal form proposition is called the antecedent. The 
left side is called the consequent because it is the consequence of the truth of 
the antecedent. As examples of clausal form propositions, consider the following:

likes(bob, trout) ⊂  likes(bob, fish) ¨  fish(trout) 

Meaning??

Right side implies left side
If all of the A are true, at least one B is true
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The period between X and P simply separates the variable from the proposi-
tion. For example, consider the following:

5X.(woman(X) ⊃ human(X))  
EX.(mother(mary, X) ¨  male(X))

The first of these propositions means that for any value of X, if X is a woman, 
then X is a human. The second means that there exists a value of X such that 
mary is the mother of X and X is a male; in other words, mary has a son. The 
scope of the universal and existential quantifiers is the atomic propositions to 
which they are attached. This scope can be extended using parentheses, as in 
the two compound propositions just described. So, the universal and existential 
quantifiers have higher precedence than any of the operators.

16.2.2 Clausal Form

We are discussing predicate calculus because it is the basis for logic program-
ming languages. As with other languages, logic languages are best in their sim-
plest form, meaning that redundancy should be minimized.

One problem with predicate calculus as we have described it thus far is that 
there are too many different ways of stating propositions that have the same 
meaning; that is, there is a great deal of redundancy. This is not such a problem 
for logicians, but if predicate calculus is to be used in an automated (comput-
erized) system, it is a serious problem. To simplify matters, a standard form 
for propositions is desirable. Clausal form, which is a relatively simple form of 
propositions, is one such standard form. All propositions can be expressed in 
clausal form. A proposition in clausal form has the following general syntax:

B1 ∪ B2 ∪ c ∪ Bn⊂ A1 ¨ A2 ¨ c ¨ Am

in which the A’s and B’s are terms. The meaning of this clausal form proposition 
is as follows: If all of the A’s are true, then at least one B is true. The primary 
characteristics of clausal form propositions are the following: Existential quan-
tifiers are not required; universal quantifiers are implicit in the use of variables 
in the atomic propositions; and no operators other than conjunction and dis-
junction are required. Also, conjunction and disjunction need appear only in 
the order shown in the general clausal form: disjunction on the left side and 
conjunction on the right side. All predicate calculus propositions can be algo-
rithmically converted to clausal form. Nilsson (1971) gives proof that this can 
be done, as well as a simple conversion algorithm for doing it.

The right side of a clausal form proposition is called the antecedent. The 
left side is called the consequent because it is the consequence of the truth of 
the antecedent. As examples of clausal form propositions, consider the following:

likes(bob, trout) ⊂  likes(bob, fish) ¨  fish(trout) 

All predicate calculus propositions can be converted
into clausal form (proof: Nilsson 1971)
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The period between X and P simply separates the variable from the proposi-
tion. For example, consider the following:

5X.(woman(X) ⊃ human(X))  
EX.(mother(mary, X) ¨  male(X))

The first of these propositions means that for any value of X, if X is a woman, 
then X is a human. The second means that there exists a value of X such that 
mary is the mother of X and X is a male; in other words, mary has a son. The 
scope of the universal and existential quantifiers is the atomic propositions to 
which they are attached. This scope can be extended using parentheses, as in 
the two compound propositions just described. So, the universal and existential 
quantifiers have higher precedence than any of the operators.

16.2.2 Clausal Form

We are discussing predicate calculus because it is the basis for logic program-
ming languages. As with other languages, logic languages are best in their sim-
plest form, meaning that redundancy should be minimized.

One problem with predicate calculus as we have described it thus far is that 
there are too many different ways of stating propositions that have the same 
meaning; that is, there is a great deal of redundancy. This is not such a problem 
for logicians, but if predicate calculus is to be used in an automated (comput-
erized) system, it is a serious problem. To simplify matters, a standard form 
for propositions is desirable. Clausal form, which is a relatively simple form of 
propositions, is one such standard form. All propositions can be expressed in 
clausal form. A proposition in clausal form has the following general syntax:

B1 ∪ B2 ∪ c ∪ Bn⊂ A1 ¨ A2 ¨ c ¨ Am

in which the A’s and B’s are terms. The meaning of this clausal form proposition 
is as follows: If all of the A’s are true, then at least one B is true. The primary 
characteristics of clausal form propositions are the following: Existential quan-
tifiers are not required; universal quantifiers are implicit in the use of variables 
in the atomic propositions; and no operators other than conjunction and dis-
junction are required. Also, conjunction and disjunction need appear only in 
the order shown in the general clausal form: disjunction on the left side and 
conjunction on the right side. All predicate calculus propositions can be algo-
rithmically converted to clausal form. Nilsson (1971) gives proof that this can 
be done, as well as a simple conversion algorithm for doing it.

The right side of a clausal form proposition is called the antecedent. The 
left side is called the consequent because it is the consequence of the truth of 
the antecedent. As examples of clausal form propositions, consider the following:

likes(bob, trout) ⊂  likes(bob, fish) ¨  fish(trout) 

Examples??
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The period between X and P simply separates the variable from the proposi-
tion. For example, consider the following:

5X.(woman(X) ⊃ human(X))  
EX.(mother(mary, X) ¨  male(X))

The first of these propositions means that for any value of X, if X is a woman, 
then X is a human. The second means that there exists a value of X such that 
mary is the mother of X and X is a male; in other words, mary has a son. The 
scope of the universal and existential quantifiers is the atomic propositions to 
which they are attached. This scope can be extended using parentheses, as in 
the two compound propositions just described. So, the universal and existential 
quantifiers have higher precedence than any of the operators.

16.2.2 Clausal Form

We are discussing predicate calculus because it is the basis for logic program-
ming languages. As with other languages, logic languages are best in their sim-
plest form, meaning that redundancy should be minimized.

One problem with predicate calculus as we have described it thus far is that 
there are too many different ways of stating propositions that have the same 
meaning; that is, there is a great deal of redundancy. This is not such a problem 
for logicians, but if predicate calculus is to be used in an automated (comput-
erized) system, it is a serious problem. To simplify matters, a standard form 
for propositions is desirable. Clausal form, which is a relatively simple form of 
propositions, is one such standard form. All propositions can be expressed in 
clausal form. A proposition in clausal form has the following general syntax:

B1 ∪ B2 ∪ c ∪ Bn⊂ A1 ¨ A2 ¨ c ¨ Am

in which the A’s and B’s are terms. The meaning of this clausal form proposition 
is as follows: If all of the A’s are true, then at least one B is true. The primary 
characteristics of clausal form propositions are the following: Existential quan-
tifiers are not required; universal quantifiers are implicit in the use of variables 
in the atomic propositions; and no operators other than conjunction and dis-
junction are required. Also, conjunction and disjunction need appear only in 
the order shown in the general clausal form: disjunction on the left side and 
conjunction on the right side. All predicate calculus propositions can be algo-
rithmically converted to clausal form. Nilsson (1971) gives proof that this can 
be done, as well as a simple conversion algorithm for doing it.

The right side of a clausal form proposition is called the antecedent. The 
left side is called the consequent because it is the consequence of the truth of 
the antecedent. As examples of clausal form propositions, consider the following:

likes(bob, trout) ⊂  likes(bob, fish) ¨  fish(trout) 

Examples??

16.2 A Brief Introduction to Predicate Calculus     717

The period between X and P simply separates the variable from the proposi-
tion. For example, consider the following:

5X.(woman(X) ⊃ human(X))  
EX.(mother(mary, X) ¨  male(X))

The first of these propositions means that for any value of X, if X is a woman, 
then X is a human. The second means that there exists a value of X such that 
mary is the mother of X and X is a male; in other words, mary has a son. The 
scope of the universal and existential quantifiers is the atomic propositions to 
which they are attached. This scope can be extended using parentheses, as in 
the two compound propositions just described. So, the universal and existential 
quantifiers have higher precedence than any of the operators.

16.2.2 Clausal Form

We are discussing predicate calculus because it is the basis for logic program-
ming languages. As with other languages, logic languages are best in their sim-
plest form, meaning that redundancy should be minimized.

One problem with predicate calculus as we have described it thus far is that 
there are too many different ways of stating propositions that have the same 
meaning; that is, there is a great deal of redundancy. This is not such a problem 
for logicians, but if predicate calculus is to be used in an automated (comput-
erized) system, it is a serious problem. To simplify matters, a standard form 
for propositions is desirable. Clausal form, which is a relatively simple form of 
propositions, is one such standard form. All propositions can be expressed in 
clausal form. A proposition in clausal form has the following general syntax:

B1 ∪ B2 ∪ c ∪ Bn⊂ A1 ¨ A2 ¨ c ¨ Am

in which the A’s and B’s are terms. The meaning of this clausal form proposition 
is as follows: If all of the A’s are true, then at least one B is true. The primary 
characteristics of clausal form propositions are the following: Existential quan-
tifiers are not required; universal quantifiers are implicit in the use of variables 
in the atomic propositions; and no operators other than conjunction and dis-
junction are required. Also, conjunction and disjunction need appear only in 
the order shown in the general clausal form: disjunction on the left side and 
conjunction on the right side. All predicate calculus propositions can be algo-
rithmically converted to clausal form. Nilsson (1971) gives proof that this can 
be done, as well as a simple conversion algorithm for doing it.

The right side of a clausal form proposition is called the antecedent. The 
left side is called the consequent because it is the consequence of the truth of 
the antecedent. As examples of clausal form propositions, consider the following:

likes(bob, trout) ⊂  likes(bob, fish) ¨  fish(trout) 
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The period between X and P simply separates the variable from the proposi-
tion. For example, consider the following:

5X.(woman(X) ⊃ human(X))  
EX.(mother(mary, X) ¨  male(X))

The first of these propositions means that for any value of X, if X is a woman, 
then X is a human. The second means that there exists a value of X such that 
mary is the mother of X and X is a male; in other words, mary has a son. The 
scope of the universal and existential quantifiers is the atomic propositions to 
which they are attached. This scope can be extended using parentheses, as in 
the two compound propositions just described. So, the universal and existential 
quantifiers have higher precedence than any of the operators.

16.2.2 Clausal Form

We are discussing predicate calculus because it is the basis for logic program-
ming languages. As with other languages, logic languages are best in their sim-
plest form, meaning that redundancy should be minimized.

One problem with predicate calculus as we have described it thus far is that 
there are too many different ways of stating propositions that have the same 
meaning; that is, there is a great deal of redundancy. This is not such a problem 
for logicians, but if predicate calculus is to be used in an automated (comput-
erized) system, it is a serious problem. To simplify matters, a standard form 
for propositions is desirable. Clausal form, which is a relatively simple form of 
propositions, is one such standard form. All propositions can be expressed in 
clausal form. A proposition in clausal form has the following general syntax:

B1 ∪ B2 ∪ c ∪ Bn⊂ A1 ¨ A2 ¨ c ¨ Am

in which the A’s and B’s are terms. The meaning of this clausal form proposition 
is as follows: If all of the A’s are true, then at least one B is true. The primary 
characteristics of clausal form propositions are the following: Existential quan-
tifiers are not required; universal quantifiers are implicit in the use of variables 
in the atomic propositions; and no operators other than conjunction and dis-
junction are required. Also, conjunction and disjunction need appear only in 
the order shown in the general clausal form: disjunction on the left side and 
conjunction on the right side. All predicate calculus propositions can be algo-
rithmically converted to clausal form. Nilsson (1971) gives proof that this can 
be done, as well as a simple conversion algorithm for doing it.

The right side of a clausal form proposition is called the antecedent. The 
left side is called the consequent because it is the consequence of the truth of 
the antecedent. As examples of clausal form propositions, consider the following:

likes(bob, trout) ⊂  likes(bob, fish) ¨  fish(trout) 

Examples??

16.2 A Brief Introduction to Predicate Calculus     717

The period between X and P simply separates the variable from the proposi-
tion. For example, consider the following:

5X.(woman(X) ⊃ human(X))  
EX.(mother(mary, X) ¨  male(X))

The first of these propositions means that for any value of X, if X is a woman, 
then X is a human. The second means that there exists a value of X such that 
mary is the mother of X and X is a male; in other words, mary has a son. The 
scope of the universal and existential quantifiers is the atomic propositions to 
which they are attached. This scope can be extended using parentheses, as in 
the two compound propositions just described. So, the universal and existential 
quantifiers have higher precedence than any of the operators.

16.2.2 Clausal Form

We are discussing predicate calculus because it is the basis for logic program-
ming languages. As with other languages, logic languages are best in their sim-
plest form, meaning that redundancy should be minimized.

One problem with predicate calculus as we have described it thus far is that 
there are too many different ways of stating propositions that have the same 
meaning; that is, there is a great deal of redundancy. This is not such a problem 
for logicians, but if predicate calculus is to be used in an automated (comput-
erized) system, it is a serious problem. To simplify matters, a standard form 
for propositions is desirable. Clausal form, which is a relatively simple form of 
propositions, is one such standard form. All propositions can be expressed in 
clausal form. A proposition in clausal form has the following general syntax:

B1 ∪ B2 ∪ c ∪ Bn⊂ A1 ¨ A2 ¨ c ¨ Am

in which the A’s and B’s are terms. The meaning of this clausal form proposition 
is as follows: If all of the A’s are true, then at least one B is true. The primary 
characteristics of clausal form propositions are the following: Existential quan-
tifiers are not required; universal quantifiers are implicit in the use of variables 
in the atomic propositions; and no operators other than conjunction and dis-
junction are required. Also, conjunction and disjunction need appear only in 
the order shown in the general clausal form: disjunction on the left side and 
conjunction on the right side. All predicate calculus propositions can be algo-
rithmically converted to clausal form. Nilsson (1971) gives proof that this can 
be done, as well as a simple conversion algorithm for doing it.

The right side of a clausal form proposition is called the antecedent. The 
left side is called the consequent because it is the consequence of the truth of 
the antecedent. As examples of clausal form propositions, consider the following:

likes(bob, trout) ⊂  likes(bob, fish) ¨  fish(trout) 

if Bob likes fish and trout is a fish,
then bob likes trout
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father(louis, al) ∪  father(louis, violet) ⊂
   father(al, bob) ¨  mother(violet, bob) ¨  grandfather(louis, bob) 

The English version of the first of these states that if bob likes fish and a trout 
is a fish, then bob likes trout. The second states that if al is bob’s father and 
violet is bob’s mother and louis is bob’s grandfather, then louis is either al’s 
father or violet’s father.

16.3 Predicate Calculus and Proving Theorems
Predicate calculus provides a method of expressing collections of propositions. 
One use of collections of propositions is to determine whether any interesting 
or useful facts can be inferred from them. This is exactly analogous to the work 
of mathematicians, who strive to discover new theorems that can be inferred 
from known axioms and theorems.

The early days of computer science (the 1950s and early 1960s) saw a great 
deal of interest in automating the theorem-proving process. One of the most 
significant breakthroughs in automatic theorem proving was the discovery of 
the resolution principle by Alan Robinson (1965) at Syracuse University.

Resolution is an inference rule that allows inferred propositions to be 
computed from given propositions, thus providing a method with potential 
application to automatic theorem proving. Resolution was devised to be applied 
to propositions in clausal form. The concept of resolution is the following: 
Suppose there are two propositions with the forms

P1 ⊂ P2
Q1 ⊂ Q2

Their meaning is that P2 implies P1 and Q2 implies Q1. Furthermore, suppose 
that P1 is identical to Q2, so that we could rename P1 and Q2 as T. Then, we 
could rewrite the two propositions as

T ⊂  P2
Q1 ⊂  T

Now, because P2 implies T and T implies Q1, it is logically obvious that P2 
implies Q1, which we could write as

Q1 ⊂  P2

The process of inferring this proposition from the original two propositions 
is resolution.

As another example, consider the two propositions:

older(joanne, jake) ⊂ mother(joanne, jake) 
wiser(joanne, jake) ⊂ older(joanne, jake) 

From these propositions, the following proposition can be constructed using 
resolution:
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If al is bob’s father, and violet is bob’s mother,
and louis is bob’s grandfather

Then this implies that either louis is violet’s 
father or louis is al’s father

718      Chapter 16  Logic Programming Languages

father(louis, al) ∪  father(louis, violet) ⊂
   father(al, bob) ¨  mother(violet, bob) ¨  grandfather(louis, bob) 

The English version of the first of these states that if bob likes fish and a trout 
is a fish, then bob likes trout. The second states that if al is bob’s father and 
violet is bob’s mother and louis is bob’s grandfather, then louis is either al’s 
father or violet’s father.

16.3 Predicate Calculus and Proving Theorems
Predicate calculus provides a method of expressing collections of propositions. 
One use of collections of propositions is to determine whether any interesting 
or useful facts can be inferred from them. This is exactly analogous to the work 
of mathematicians, who strive to discover new theorems that can be inferred 
from known axioms and theorems.

The early days of computer science (the 1950s and early 1960s) saw a great 
deal of interest in automating the theorem-proving process. One of the most 
significant breakthroughs in automatic theorem proving was the discovery of 
the resolution principle by Alan Robinson (1965) at Syracuse University.

Resolution is an inference rule that allows inferred propositions to be 
computed from given propositions, thus providing a method with potential 
application to automatic theorem proving. Resolution was devised to be applied 
to propositions in clausal form. The concept of resolution is the following: 
Suppose there are two propositions with the forms

P1 ⊂ P2
Q1 ⊂ Q2

Their meaning is that P2 implies P1 and Q2 implies Q1. Furthermore, suppose 
that P1 is identical to Q2, so that we could rename P1 and Q2 as T. Then, we 
could rewrite the two propositions as

T ⊂  P2
Q1 ⊂  T

Now, because P2 implies T and T implies Q1, it is logically obvious that P2 
implies Q1, which we could write as

Q1 ⊂  P2

The process of inferring this proposition from the original two propositions 
is resolution.

As another example, consider the two propositions:

older(joanne, jake) ⊂ mother(joanne, jake) 
wiser(joanne, jake) ⊂ older(joanne, jake) 

From these propositions, the following proposition can be constructed using 
resolution:
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§ One use: determine whether any interesting/useful
facts can be inferred…
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Predicate calculus and proving theorems

§ Predicate calculus: method for expressing collections
of propositions

§ One use: determine whether any interesting/useful
facts can be inferred…

(analogous to mathematics; discover new theorems
that can be inferred from known axioms and theorems)
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§ 1950s, 1060s: lots of interest in automating
theorem-proving process

§ Significant breakthrough: Alan Robinson 1965
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theorem-proving process
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Resolution: inference rule that allows inferred 
propositions to be computed from given 
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Predicate calculus and proving theorems

§ 1950s, 1060s: lots of interest in automating
theorem-proving process

§ Significant breakthrough: Alan Robinson 1965

Resolution: inference rule that allows inferred 
propositions to be computed from given 
propositions, therefore providing method with 
potential for theorem proving
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Example of resolution process:

Suppose two propositions with the form:
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father(louis, al) ∪  father(louis, violet) ⊂
   father(al, bob) ¨  mother(violet, bob) ¨  grandfather(louis, bob) 

The English version of the first of these states that if bob likes fish and a trout 
is a fish, then bob likes trout. The second states that if al is bob’s father and 
violet is bob’s mother and louis is bob’s grandfather, then louis is either al’s 
father or violet’s father.

16.3 Predicate Calculus and Proving Theorems
Predicate calculus provides a method of expressing collections of propositions. 
One use of collections of propositions is to determine whether any interesting 
or useful facts can be inferred from them. This is exactly analogous to the work 
of mathematicians, who strive to discover new theorems that can be inferred 
from known axioms and theorems.

The early days of computer science (the 1950s and early 1960s) saw a great 
deal of interest in automating the theorem-proving process. One of the most 
significant breakthroughs in automatic theorem proving was the discovery of 
the resolution principle by Alan Robinson (1965) at Syracuse University.

Resolution is an inference rule that allows inferred propositions to be 
computed from given propositions, thus providing a method with potential 
application to automatic theorem proving. Resolution was devised to be applied 
to propositions in clausal form. The concept of resolution is the following: 
Suppose there are two propositions with the forms

P1 ⊂ P2
Q1 ⊂ Q2

Their meaning is that P2 implies P1 and Q2 implies Q1. Furthermore, suppose 
that P1 is identical to Q2, so that we could rename P1 and Q2 as T. Then, we 
could rewrite the two propositions as

T ⊂  P2
Q1 ⊂  T

Now, because P2 implies T and T implies Q1, it is logically obvious that P2 
implies Q1, which we could write as

Q1 ⊂  P2

The process of inferring this proposition from the original two propositions 
is resolution.

As another example, consider the two propositions:

older(joanne, jake) ⊂ mother(joanne, jake) 
wiser(joanne, jake) ⊂ older(joanne, jake) 

From these propositions, the following proposition can be constructed using 
resolution:

(    implies    )
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Example of resolution process:

Suppose two propositions with the form:

718      Chapter 16  Logic Programming Languages

father(louis, al) ∪  father(louis, violet) ⊂
   father(al, bob) ¨  mother(violet, bob) ¨  grandfather(louis, bob) 

The English version of the first of these states that if bob likes fish and a trout 
is a fish, then bob likes trout. The second states that if al is bob’s father and 
violet is bob’s mother and louis is bob’s grandfather, then louis is either al’s 
father or violet’s father.

16.3 Predicate Calculus and Proving Theorems
Predicate calculus provides a method of expressing collections of propositions. 
One use of collections of propositions is to determine whether any interesting 
or useful facts can be inferred from them. This is exactly analogous to the work 
of mathematicians, who strive to discover new theorems that can be inferred 
from known axioms and theorems.

The early days of computer science (the 1950s and early 1960s) saw a great 
deal of interest in automating the theorem-proving process. One of the most 
significant breakthroughs in automatic theorem proving was the discovery of 
the resolution principle by Alan Robinson (1965) at Syracuse University.

Resolution is an inference rule that allows inferred propositions to be 
computed from given propositions, thus providing a method with potential 
application to automatic theorem proving. Resolution was devised to be applied 
to propositions in clausal form. The concept of resolution is the following: 
Suppose there are two propositions with the forms

P1 ⊂ P2
Q1 ⊂ Q2

Their meaning is that P2 implies P1 and Q2 implies Q1. Furthermore, suppose 
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Now, because P2 implies T and T implies Q1, it is logically obvious that P2 
implies Q1, which we could write as
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The process of inferring this proposition from the original two propositions 
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As another example, consider the two propositions:

older(joanne, jake) ⊂ mother(joanne, jake) 
wiser(joanne, jake) ⊂ older(joanne, jake) 

From these propositions, the following proposition can be constructed using 
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From these propositions, the following proposition can be constructed using 
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Suppose further:
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is identical to
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Example of resolution process:

Suppose further:
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Example of resolution process:

So now:
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So we can infer that??
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We can therefore infer that:
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wiser(joanne, jake) ⊂ mother(joanne, jake) 

The mechanics of this resolution construction are simple: The terms of the 
left sides of the two clausal propositions are OR’d together to make the left side 
of the new proposition. Then the right sides of the two clausal propositions are 
AND’d together to get the right side of the new proposition. Next, any term 
that appears on both sides of the new proposition is removed from both sides. 
The process is exactly the same when the propositions have multiple terms 
on either or both sides. The left side of the new inferred proposition initially 
contains all of the terms of the left sides of the two given propositions. The new 
right side is similarly constructed. Then the term that appears on both sides of 
the new proposition is removed. For example, if we have

father(bob, jake) ∪  mother(bob, jake) ⊂ parent(bob, jake)
grandfather(bob, fred) ⊂ father(bob, jake) ¨  father(jake, fred) 

resolution says that

mother(bob, jake) ∪  grandfather(bob, fred) ⊂
   parent(bob, jake) ¨  father(jake, fred) 

which has all but one of the atomic propositions of both of the original prop-
ositions. The one atomic proposition that allowed the operation father (bob, 
jake) in the left side of the first and in the right side of the second is left out. 
In English, we would say

if:    bob is the parent of jake implies that bob is either the father or mother 
of jake

and:   bob is the father of jake and jake is the father of fred implies that bob is 
the grandfather of fred

then:  if bob is the parent of jake and jake is the father of fred then: either bob 
is jake’s mother or bob is fred’s grandfather

Resolution is actually more complex than these simple examples illustrate. 
In particular, the presence of variables in propositions requires resolution to find 
values for those variables that allow the matching process to succeed. This process 
of determining useful values for variables is called unification. The temporary 
assigning of values to variables to allow unification is called instantiation.

It is common for the resolution process to instantiate a variable with a 
value, fail to complete the required matching, and then be required to backtrack 
and instantiate the variable with a different value. We will discuss unification 
and backtracking more extensively in the context of Prolog.

A critically important property of resolution is its ability to detect any 
inconsistency in a given set of propositions. This is based on the formal prop-
erty of resolution called refutation complete. What this means is that given a 
set of inconsistent propositions, resolution can prove them to be inconsistent. 
This allows resolution to be used to prove theorems, which can be done as 
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Process of resolution:

1. Terms on left side of the two clausal propositions
are OR’d together, to make left side of new
proposition
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Process of resolution:

1. Terms on left side of the two clausal propositions
are OR’d together, to make left side of new
proposition

2. Terms on right side of two clausal propositions
are And’d together, to make right side of new
proposition
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Process of resolution:

1. Terms on left side of the two clausal propositions
are OR’d together, to make left side of new
proposition

2. Terms on right side of two clausal propositions
are And’d together, to make right side of new
proposition

3. Any term that appears on both sides of new
proposition removed from both sides
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wiser(joanne, jake) ⊂ mother(joanne, jake) 

The mechanics of this resolution construction are simple: The terms of the 
left sides of the two clausal propositions are OR’d together to make the left side 
of the new proposition. Then the right sides of the two clausal propositions are 
AND’d together to get the right side of the new proposition. Next, any term 
that appears on both sides of the new proposition is removed from both sides. 
The process is exactly the same when the propositions have multiple terms 
on either or both sides. The left side of the new inferred proposition initially 
contains all of the terms of the left sides of the two given propositions. The new 
right side is similarly constructed. Then the term that appears on both sides of 
the new proposition is removed. For example, if we have

father(bob, jake) ∪  mother(bob, jake) ⊂ parent(bob, jake)
grandfather(bob, fred) ⊂ father(bob, jake) ¨  father(jake, fred) 

resolution says that

mother(bob, jake) ∪  grandfather(bob, fred) ⊂
   parent(bob, jake) ¨  father(jake, fred) 

which has all but one of the atomic propositions of both of the original prop-
ositions. The one atomic proposition that allowed the operation father (bob, 
jake) in the left side of the first and in the right side of the second is left out. 
In English, we would say

if:    bob is the parent of jake implies that bob is either the father or mother 
of jake

and:   bob is the father of jake and jake is the father of fred implies that bob is 
the grandfather of fred

then:  if bob is the parent of jake and jake is the father of fred then: either bob 
is jake’s mother or bob is fred’s grandfather

Resolution is actually more complex than these simple examples illustrate. 
In particular, the presence of variables in propositions requires resolution to find 
values for those variables that allow the matching process to succeed. This process 
of determining useful values for variables is called unification. The temporary 
assigning of values to variables to allow unification is called instantiation.

It is common for the resolution process to instantiate a variable with a 
value, fail to complete the required matching, and then be required to backtrack 
and instantiate the variable with a different value. We will discuss unification 
and backtracking more extensively in the context of Prolog.

A critically important property of resolution is its ability to detect any 
inconsistency in a given set of propositions. This is based on the formal prop-
erty of resolution called refutation complete. What this means is that given a 
set of inconsistent propositions, resolution can prove them to be inconsistent. 
This allows resolution to be used to prove theorems, which can be done as 

First, what does this read as?

Next, what is the resolution?
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wiser(joanne, jake) ⊂ mother(joanne, jake) 

The mechanics of this resolution construction are simple: The terms of the 
left sides of the two clausal propositions are OR’d together to make the left side 
of the new proposition. Then the right sides of the two clausal propositions are 
AND’d together to get the right side of the new proposition. Next, any term 
that appears on both sides of the new proposition is removed from both sides. 
The process is exactly the same when the propositions have multiple terms 
on either or both sides. The left side of the new inferred proposition initially 
contains all of the terms of the left sides of the two given propositions. The new 
right side is similarly constructed. Then the term that appears on both sides of 
the new proposition is removed. For example, if we have

father(bob, jake) ∪  mother(bob, jake) ⊂ parent(bob, jake)
grandfather(bob, fred) ⊂ father(bob, jake) ¨  father(jake, fred) 

resolution says that

mother(bob, jake) ∪  grandfather(bob, fred) ⊂
   parent(bob, jake) ¨  father(jake, fred) 

which has all but one of the atomic propositions of both of the original prop-
ositions. The one atomic proposition that allowed the operation father (bob, 
jake) in the left side of the first and in the right side of the second is left out. 
In English, we would say

if:    bob is the parent of jake implies that bob is either the father or mother 
of jake

and:   bob is the father of jake and jake is the father of fred implies that bob is 
the grandfather of fred

then:  if bob is the parent of jake and jake is the father of fred then: either bob 
is jake’s mother or bob is fred’s grandfather

Resolution is actually more complex than these simple examples illustrate. 
In particular, the presence of variables in propositions requires resolution to find 
values for those variables that allow the matching process to succeed. This process 
of determining useful values for variables is called unification. The temporary 
assigning of values to variables to allow unification is called instantiation.

It is common for the resolution process to instantiate a variable with a 
value, fail to complete the required matching, and then be required to backtrack 
and instantiate the variable with a different value. We will discuss unification 
and backtracking more extensively in the context of Prolog.

A critically important property of resolution is its ability to detect any 
inconsistency in a given set of propositions. This is based on the formal prop-
erty of resolution called refutation complete. What this means is that given a 
set of inconsistent propositions, resolution can prove them to be inconsistent. 
This allows resolution to be used to prove theorems, which can be done as 
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wiser(joanne, jake) ⊂ mother(joanne, jake) 

The mechanics of this resolution construction are simple: The terms of the 
left sides of the two clausal propositions are OR’d together to make the left side 
of the new proposition. Then the right sides of the two clausal propositions are 
AND’d together to get the right side of the new proposition. Next, any term 
that appears on both sides of the new proposition is removed from both sides. 
The process is exactly the same when the propositions have multiple terms 
on either or both sides. The left side of the new inferred proposition initially 
contains all of the terms of the left sides of the two given propositions. The new 
right side is similarly constructed. Then the term that appears on both sides of 
the new proposition is removed. For example, if we have

father(bob, jake) ∪  mother(bob, jake) ⊂ parent(bob, jake)
grandfather(bob, fred) ⊂ father(bob, jake) ¨  father(jake, fred) 

resolution says that

mother(bob, jake) ∪  grandfather(bob, fred) ⊂
   parent(bob, jake) ¨  father(jake, fred) 

which has all but one of the atomic propositions of both of the original prop-
ositions. The one atomic proposition that allowed the operation father (bob, 
jake) in the left side of the first and in the right side of the second is left out. 
In English, we would say

if:    bob is the parent of jake implies that bob is either the father or mother 
of jake

and:   bob is the father of jake and jake is the father of fred implies that bob is 
the grandfather of fred

then:  if bob is the parent of jake and jake is the father of fred then: either bob 
is jake’s mother or bob is fred’s grandfather

Resolution is actually more complex than these simple examples illustrate. 
In particular, the presence of variables in propositions requires resolution to find 
values for those variables that allow the matching process to succeed. This process 
of determining useful values for variables is called unification. The temporary 
assigning of values to variables to allow unification is called instantiation.

It is common for the resolution process to instantiate a variable with a 
value, fail to complete the required matching, and then be required to backtrack 
and instantiate the variable with a different value. We will discuss unification 
and backtracking more extensively in the context of Prolog.

A critically important property of resolution is its ability to detect any 
inconsistency in a given set of propositions. This is based on the formal prop-
erty of resolution called refutation complete. What this means is that given a 
set of inconsistent propositions, resolution can prove them to be inconsistent. 
This allows resolution to be used to prove theorems, which can be done as 
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The mechanics of this resolution construction are simple: The terms of the 
left sides of the two clausal propositions are OR’d together to make the left side 
of the new proposition. Then the right sides of the two clausal propositions are 
AND’d together to get the right side of the new proposition. Next, any term 
that appears on both sides of the new proposition is removed from both sides. 
The process is exactly the same when the propositions have multiple terms 
on either or both sides. The left side of the new inferred proposition initially 
contains all of the terms of the left sides of the two given propositions. The new 
right side is similarly constructed. Then the term that appears on both sides of 
the new proposition is removed. For example, if we have

father(bob, jake) ∪  mother(bob, jake) ⊂ parent(bob, jake)
grandfather(bob, fred) ⊂ father(bob, jake) ¨  father(jake, fred) 
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mother(bob, jake) ∪  grandfather(bob, fred) ⊂
   parent(bob, jake) ¨  father(jake, fred) 

which has all but one of the atomic propositions of both of the original prop-
ositions. The one atomic proposition that allowed the operation father (bob, 
jake) in the left side of the first and in the right side of the second is left out. 
In English, we would say

if:    bob is the parent of jake implies that bob is either the father or mother 
of jake

and:   bob is the father of jake and jake is the father of fred implies that bob is 
the grandfather of fred

then:  if bob is the parent of jake and jake is the father of fred then: either bob 
is jake’s mother or bob is fred’s grandfather

Resolution is actually more complex than these simple examples illustrate. 
In particular, the presence of variables in propositions requires resolution to find 
values for those variables that allow the matching process to succeed. This process 
of determining useful values for variables is called unification. The temporary 
assigning of values to variables to allow unification is called instantiation.

It is common for the resolution process to instantiate a variable with a 
value, fail to complete the required matching, and then be required to backtrack 
and instantiate the variable with a different value. We will discuss unification 
and backtracking more extensively in the context of Prolog.

A critically important property of resolution is its ability to detect any 
inconsistency in a given set of propositions. This is based on the formal prop-
erty of resolution called refutation complete. What this means is that given a 
set of inconsistent propositions, resolution can prove them to be inconsistent. 
This allows resolution to be used to prove theorems, which can be done as 
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The mechanics of this resolution construction are simple: The terms of the 
left sides of the two clausal propositions are OR’d together to make the left side 
of the new proposition. Then the right sides of the two clausal propositions are 
AND’d together to get the right side of the new proposition. Next, any term 
that appears on both sides of the new proposition is removed from both sides. 
The process is exactly the same when the propositions have multiple terms 
on either or both sides. The left side of the new inferred proposition initially 
contains all of the terms of the left sides of the two given propositions. The new 
right side is similarly constructed. Then the term that appears on both sides of 
the new proposition is removed. For example, if we have

father(bob, jake) ∪  mother(bob, jake) ⊂ parent(bob, jake)
grandfather(bob, fred) ⊂ father(bob, jake) ¨  father(jake, fred) 

resolution says that

mother(bob, jake) ∪  grandfather(bob, fred) ⊂
   parent(bob, jake) ¨  father(jake, fred) 

which has all but one of the atomic propositions of both of the original prop-
ositions. The one atomic proposition that allowed the operation father (bob, 
jake) in the left side of the first and in the right side of the second is left out. 
In English, we would say

if:    bob is the parent of jake implies that bob is either the father or mother 
of jake

and:   bob is the father of jake and jake is the father of fred implies that bob is 
the grandfather of fred

then:  if bob is the parent of jake and jake is the father of fred then: either bob 
is jake’s mother or bob is fred’s grandfather

Resolution is actually more complex than these simple examples illustrate. 
In particular, the presence of variables in propositions requires resolution to find 
values for those variables that allow the matching process to succeed. This process 
of determining useful values for variables is called unification. The temporary 
assigning of values to variables to allow unification is called instantiation.

It is common for the resolution process to instantiate a variable with a 
value, fail to complete the required matching, and then be required to backtrack 
and instantiate the variable with a different value. We will discuss unification 
and backtracking more extensively in the context of Prolog.

A critically important property of resolution is its ability to detect any 
inconsistency in a given set of propositions. This is based on the formal prop-
erty of resolution called refutation complete. What this means is that given a 
set of inconsistent propositions, resolution can prove them to be inconsistent. 
This allows resolution to be used to prove theorems, which can be done as 

OR the 
left sides
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wiser(joanne, jake) ⊂ mother(joanne, jake) 

The mechanics of this resolution construction are simple: The terms of the 
left sides of the two clausal propositions are OR’d together to make the left side 
of the new proposition. Then the right sides of the two clausal propositions are 
AND’d together to get the right side of the new proposition. Next, any term 
that appears on both sides of the new proposition is removed from both sides. 
The process is exactly the same when the propositions have multiple terms 
on either or both sides. The left side of the new inferred proposition initially 
contains all of the terms of the left sides of the two given propositions. The new 
right side is similarly constructed. Then the term that appears on both sides of 
the new proposition is removed. For example, if we have

father(bob, jake) ∪  mother(bob, jake) ⊂ parent(bob, jake)
grandfather(bob, fred) ⊂ father(bob, jake) ¨  father(jake, fred) 

resolution says that

mother(bob, jake) ∪  grandfather(bob, fred) ⊂
   parent(bob, jake) ¨  father(jake, fred) 

which has all but one of the atomic propositions of both of the original prop-
ositions. The one atomic proposition that allowed the operation father (bob, 
jake) in the left side of the first and in the right side of the second is left out. 
In English, we would say

if:    bob is the parent of jake implies that bob is either the father or mother 
of jake

and:   bob is the father of jake and jake is the father of fred implies that bob is 
the grandfather of fred

then:  if bob is the parent of jake and jake is the father of fred then: either bob 
is jake’s mother or bob is fred’s grandfather

Resolution is actually more complex than these simple examples illustrate. 
In particular, the presence of variables in propositions requires resolution to find 
values for those variables that allow the matching process to succeed. This process 
of determining useful values for variables is called unification. The temporary 
assigning of values to variables to allow unification is called instantiation.

It is common for the resolution process to instantiate a variable with a 
value, fail to complete the required matching, and then be required to backtrack 
and instantiate the variable with a different value. We will discuss unification 
and backtracking more extensively in the context of Prolog.

A critically important property of resolution is its ability to detect any 
inconsistency in a given set of propositions. This is based on the formal prop-
erty of resolution called refutation complete. What this means is that given a 
set of inconsistent propositions, resolution can prove them to be inconsistent. 
This allows resolution to be used to prove theorems, which can be done as 

AND the 
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wiser(joanne, jake) ⊂ mother(joanne, jake) 

The mechanics of this resolution construction are simple: The terms of the 
left sides of the two clausal propositions are OR’d together to make the left side 
of the new proposition. Then the right sides of the two clausal propositions are 
AND’d together to get the right side of the new proposition. Next, any term 
that appears on both sides of the new proposition is removed from both sides. 
The process is exactly the same when the propositions have multiple terms 
on either or both sides. The left side of the new inferred proposition initially 
contains all of the terms of the left sides of the two given propositions. The new 
right side is similarly constructed. Then the term that appears on both sides of 
the new proposition is removed. For example, if we have

father(bob, jake) ∪  mother(bob, jake) ⊂ parent(bob, jake)
grandfather(bob, fred) ⊂ father(bob, jake) ¨  father(jake, fred) 

resolution says that

mother(bob, jake) ∪  grandfather(bob, fred) ⊂
   parent(bob, jake) ¨  father(jake, fred) 

which has all but one of the atomic propositions of both of the original prop-
ositions. The one atomic proposition that allowed the operation father (bob, 
jake) in the left side of the first and in the right side of the second is left out. 
In English, we would say

if:    bob is the parent of jake implies that bob is either the father or mother 
of jake

and:   bob is the father of jake and jake is the father of fred implies that bob is 
the grandfather of fred

then:  if bob is the parent of jake and jake is the father of fred then: either bob 
is jake’s mother or bob is fred’s grandfather

Resolution is actually more complex than these simple examples illustrate. 
In particular, the presence of variables in propositions requires resolution to find 
values for those variables that allow the matching process to succeed. This process 
of determining useful values for variables is called unification. The temporary 
assigning of values to variables to allow unification is called instantiation.

It is common for the resolution process to instantiate a variable with a 
value, fail to complete the required matching, and then be required to backtrack 
and instantiate the variable with a different value. We will discuss unification 
and backtracking more extensively in the context of Prolog.

A critically important property of resolution is its ability to detect any 
inconsistency in a given set of propositions. This is based on the formal prop-
erty of resolution called refutation complete. What this means is that given a 
set of inconsistent propositions, resolution can prove them to be inconsistent. 
This allows resolution to be used to prove theorems, which can be done as 
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wiser(joanne, jake) ⊂ mother(joanne, jake) 
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the new proposition is removed. For example, if we have
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   parent(bob, jake) ¨  father(jake, fred) 

which has all but one of the atomic propositions of both of the original prop-
ositions. The one atomic proposition that allowed the operation father (bob, 
jake) in the left side of the first and in the right side of the second is left out. 
In English, we would say

if:    bob is the parent of jake implies that bob is either the father or mother 
of jake

and:   bob is the father of jake and jake is the father of fred implies that bob is 
the grandfather of fred

then:  if bob is the parent of jake and jake is the father of fred then: either bob 
is jake’s mother or bob is fred’s grandfather

Resolution is actually more complex than these simple examples illustrate. 
In particular, the presence of variables in propositions requires resolution to find 
values for those variables that allow the matching process to succeed. This process 
of determining useful values for variables is called unification. The temporary 
assigning of values to variables to allow unification is called instantiation.

It is common for the resolution process to instantiate a variable with a 
value, fail to complete the required matching, and then be required to backtrack 
and instantiate the variable with a different value. We will discuss unification 
and backtracking more extensively in the context of Prolog.

A critically important property of resolution is its ability to detect any 
inconsistency in a given set of propositions. This is based on the formal prop-
erty of resolution called refutation complete. What this means is that given a 
set of inconsistent propositions, resolution can prove them to be inconsistent. 
This allows resolution to be used to prove theorems, which can be done as 
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of the new proposition. Then the right sides of the two clausal propositions are 
AND’d together to get the right side of the new proposition. Next, any term 
that appears on both sides of the new proposition is removed from both sides. 
The process is exactly the same when the propositions have multiple terms 
on either or both sides. The left side of the new inferred proposition initially 
contains all of the terms of the left sides of the two given propositions. The new 
right side is similarly constructed. Then the term that appears on both sides of 
the new proposition is removed. For example, if we have

father(bob, jake) ∪  mother(bob, jake) ⊂ parent(bob, jake)
grandfather(bob, fred) ⊂ father(bob, jake) ¨  father(jake, fred) 

resolution says that

mother(bob, jake) ∪  grandfather(bob, fred) ⊂
   parent(bob, jake) ¨  father(jake, fred) 

which has all but one of the atomic propositions of both of the original prop-
ositions. The one atomic proposition that allowed the operation father (bob, 
jake) in the left side of the first and in the right side of the second is left out. 
In English, we would say

if:    bob is the parent of jake implies that bob is either the father or mother 
of jake

and:   bob is the father of jake and jake is the father of fred implies that bob is 
the grandfather of fred

then:  if bob is the parent of jake and jake is the father of fred then: either bob 
is jake’s mother or bob is fred’s grandfather

Resolution is actually more complex than these simple examples illustrate. 
In particular, the presence of variables in propositions requires resolution to find 
values for those variables that allow the matching process to succeed. This process 
of determining useful values for variables is called unification. The temporary 
assigning of values to variables to allow unification is called instantiation.

It is common for the resolution process to instantiate a variable with a 
value, fail to complete the required matching, and then be required to backtrack 
and instantiate the variable with a different value. We will discuss unification 
and backtracking more extensively in the context of Prolog.

A critically important property of resolution is its ability to detect any 
inconsistency in a given set of propositions. This is based on the formal prop-
erty of resolution called refutation complete. What this means is that given a 
set of inconsistent propositions, resolution can prove them to be inconsistent. 
This allows resolution to be used to prove theorems, which can be done as 
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wiser(joanne, jake) ⊂ mother(joanne, jake) 

The mechanics of this resolution construction are simple: The terms of the 
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AND’d together to get the right side of the new proposition. Next, any term 
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contains all of the terms of the left sides of the two given propositions. The new 
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mother(bob, jake) ∪  grandfather(bob, fred) ⊂
   parent(bob, jake) ¨  father(jake, fred) 

which has all but one of the atomic propositions of both of the original prop-
ositions. The one atomic proposition that allowed the operation father (bob, 
jake) in the left side of the first and in the right side of the second is left out. 
In English, we would say

if:    bob is the parent of jake implies that bob is either the father or mother 
of jake

and:   bob is the father of jake and jake is the father of fred implies that bob is 
the grandfather of fred

then:  if bob is the parent of jake and jake is the father of fred then: either bob 
is jake’s mother or bob is fred’s grandfather

Resolution is actually more complex than these simple examples illustrate. 
In particular, the presence of variables in propositions requires resolution to find 
values for those variables that allow the matching process to succeed. This process 
of determining useful values for variables is called unification. The temporary 
assigning of values to variables to allow unification is called instantiation.

It is common for the resolution process to instantiate a variable with a 
value, fail to complete the required matching, and then be required to backtrack 
and instantiate the variable with a different value. We will discuss unification 
and backtracking more extensively in the context of Prolog.

A critically important property of resolution is its ability to detect any 
inconsistency in a given set of propositions. This is based on the formal prop-
erty of resolution called refutation complete. What this means is that given a 
set of inconsistent propositions, resolution can prove them to be inconsistent. 
This allows resolution to be used to prove theorems, which can be done as 
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which has all but one of the atomic propositions of both of the original prop-
ositions. The one atomic proposition that allowed the operation father (bob, 
jake) in the left side of the first and in the right side of the second is left out. 
In English, we would say

if:    bob is the parent of jake implies that bob is either the father or mother 
of jake

and:   bob is the father of jake and jake is the father of fred implies that bob is 
the grandfather of fred

then:  if bob is the parent of jake and jake is the father of fred then: either bob 
is jake’s mother or bob is fred’s grandfather

Resolution is actually more complex than these simple examples illustrate. 
In particular, the presence of variables in propositions requires resolution to find 
values for those variables that allow the matching process to succeed. This process 
of determining useful values for variables is called unification. The temporary 
assigning of values to variables to allow unification is called instantiation.

It is common for the resolution process to instantiate a variable with a 
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3: remove any term that appears on both sides

So we obtain by resolution:

16.3 Predicate Calculus and Proving Theorems     719

wiser(joanne, jake) ⊂ mother(joanne, jake) 

The mechanics of this resolution construction are simple: The terms of the 
left sides of the two clausal propositions are OR’d together to make the left side 
of the new proposition. Then the right sides of the two clausal propositions are 
AND’d together to get the right side of the new proposition. Next, any term 
that appears on both sides of the new proposition is removed from both sides. 
The process is exactly the same when the propositions have multiple terms 
on either or both sides. The left side of the new inferred proposition initially 
contains all of the terms of the left sides of the two given propositions. The new 
right side is similarly constructed. Then the term that appears on both sides of 
the new proposition is removed. For example, if we have

father(bob, jake) ∪  mother(bob, jake) ⊂ parent(bob, jake)
grandfather(bob, fred) ⊂ father(bob, jake) ¨  father(jake, fred) 

resolution says that

mother(bob, jake) ∪  grandfather(bob, fred) ⊂
   parent(bob, jake) ¨  father(jake, fred) 

which has all but one of the atomic propositions of both of the original prop-
ositions. The one atomic proposition that allowed the operation father (bob, 
jake) in the left side of the first and in the right side of the second is left out. 
In English, we would say

if:    bob is the parent of jake implies that bob is either the father or mother 
of jake

and:   bob is the father of jake and jake is the father of fred implies that bob is 
the grandfather of fred

then:  if bob is the parent of jake and jake is the father of fred then: either bob 
is jake’s mother or bob is fred’s grandfather

Resolution is actually more complex than these simple examples illustrate. 
In particular, the presence of variables in propositions requires resolution to find 
values for those variables that allow the matching process to succeed. This process 
of determining useful values for variables is called unification. The temporary 
assigning of values to variables to allow unification is called instantiation.

It is common for the resolution process to instantiate a variable with a 
value, fail to complete the required matching, and then be required to backtrack 
and instantiate the variable with a different value. We will discuss unification 
and backtracking more extensively in the context of Prolog.

A critically important property of resolution is its ability to detect any 
inconsistency in a given set of propositions. This is based on the formal prop-
erty of resolution called refutation complete. What this means is that given a 
set of inconsistent propositions, resolution can prove them to be inconsistent. 
This allows resolution to be used to prove theorems, which can be done as 



70

Predicate calculus and proving theorems

Example process of resolution:

We obtained from resolution:

16.3 Predicate Calculus and Proving Theorems     719

wiser(joanne, jake) ⊂ mother(joanne, jake) 

The mechanics of this resolution construction are simple: The terms of the 
left sides of the two clausal propositions are OR’d together to make the left side 
of the new proposition. Then the right sides of the two clausal propositions are 
AND’d together to get the right side of the new proposition. Next, any term 
that appears on both sides of the new proposition is removed from both sides. 
The process is exactly the same when the propositions have multiple terms 
on either or both sides. The left side of the new inferred proposition initially 
contains all of the terms of the left sides of the two given propositions. The new 
right side is similarly constructed. Then the term that appears on both sides of 
the new proposition is removed. For example, if we have

father(bob, jake) ∪  mother(bob, jake) ⊂ parent(bob, jake)
grandfather(bob, fred) ⊂ father(bob, jake) ¨  father(jake, fred) 

resolution says that

mother(bob, jake) ∪  grandfather(bob, fred) ⊂
   parent(bob, jake) ¨  father(jake, fred) 

which has all but one of the atomic propositions of both of the original prop-
ositions. The one atomic proposition that allowed the operation father (bob, 
jake) in the left side of the first and in the right side of the second is left out. 
In English, we would say

if:    bob is the parent of jake implies that bob is either the father or mother 
of jake

and:   bob is the father of jake and jake is the father of fred implies that bob is 
the grandfather of fred

then:  if bob is the parent of jake and jake is the father of fred then: either bob 
is jake’s mother or bob is fred’s grandfather

Resolution is actually more complex than these simple examples illustrate. 
In particular, the presence of variables in propositions requires resolution to find 
values for those variables that allow the matching process to succeed. This process 
of determining useful values for variables is called unification. The temporary 
assigning of values to variables to allow unification is called instantiation.

It is common for the resolution process to instantiate a variable with a 
value, fail to complete the required matching, and then be required to backtrack 
and instantiate the variable with a different value. We will discuss unification 
and backtracking more extensively in the context of Prolog.

A critically important property of resolution is its ability to detect any 
inconsistency in a given set of propositions. This is based on the formal prop-
erty of resolution called refutation complete. What this means is that given a 
set of inconsistent propositions, resolution can prove them to be inconsistent. 
This allows resolution to be used to prove theorems, which can be done as 

We started with:
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wiser(joanne, jake) ⊂ mother(joanne, jake) 

The mechanics of this resolution construction are simple: The terms of the 
left sides of the two clausal propositions are OR’d together to make the left side 
of the new proposition. Then the right sides of the two clausal propositions are 
AND’d together to get the right side of the new proposition. Next, any term 
that appears on both sides of the new proposition is removed from both sides. 
The process is exactly the same when the propositions have multiple terms 
on either or both sides. The left side of the new inferred proposition initially 
contains all of the terms of the left sides of the two given propositions. The new 
right side is similarly constructed. Then the term that appears on both sides of 
the new proposition is removed. For example, if we have

father(bob, jake) ∪  mother(bob, jake) ⊂ parent(bob, jake)
grandfather(bob, fred) ⊂ father(bob, jake) ¨  father(jake, fred) 

resolution says that

mother(bob, jake) ∪  grandfather(bob, fred) ⊂
   parent(bob, jake) ¨  father(jake, fred) 

which has all but one of the atomic propositions of both of the original prop-
ositions. The one atomic proposition that allowed the operation father (bob, 
jake) in the left side of the first and in the right side of the second is left out. 
In English, we would say

if:    bob is the parent of jake implies that bob is either the father or mother 
of jake

and:   bob is the father of jake and jake is the father of fred implies that bob is 
the grandfather of fred

then:  if bob is the parent of jake and jake is the father of fred then: either bob 
is jake’s mother or bob is fred’s grandfather

Resolution is actually more complex than these simple examples illustrate. 
In particular, the presence of variables in propositions requires resolution to find 
values for those variables that allow the matching process to succeed. This process 
of determining useful values for variables is called unification. The temporary 
assigning of values to variables to allow unification is called instantiation.

It is common for the resolution process to instantiate a variable with a 
value, fail to complete the required matching, and then be required to backtrack 
and instantiate the variable with a different value. We will discuss unification 
and backtracking more extensively in the context of Prolog.

A critically important property of resolution is its ability to detect any 
inconsistency in a given set of propositions. This is based on the formal prop-
erty of resolution called refutation complete. What this means is that given a 
set of inconsistent propositions, resolution can prove them to be inconsistent. 
This allows resolution to be used to prove theorems, which can be done as 



71

Predicate calculus and proving theorems

Example process of resolution:

We obtained from resolution:
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wiser(joanne, jake) ⊂ mother(joanne, jake) 

The mechanics of this resolution construction are simple: The terms of the 
left sides of the two clausal propositions are OR’d together to make the left side 
of the new proposition. Then the right sides of the two clausal propositions are 
AND’d together to get the right side of the new proposition. Next, any term 
that appears on both sides of the new proposition is removed from both sides. 
The process is exactly the same when the propositions have multiple terms 
on either or both sides. The left side of the new inferred proposition initially 
contains all of the terms of the left sides of the two given propositions. The new 
right side is similarly constructed. Then the term that appears on both sides of 
the new proposition is removed. For example, if we have

father(bob, jake) ∪  mother(bob, jake) ⊂ parent(bob, jake)
grandfather(bob, fred) ⊂ father(bob, jake) ¨  father(jake, fred) 

resolution says that

mother(bob, jake) ∪  grandfather(bob, fred) ⊂
   parent(bob, jake) ¨  father(jake, fred) 

which has all but one of the atomic propositions of both of the original prop-
ositions. The one atomic proposition that allowed the operation father (bob, 
jake) in the left side of the first and in the right side of the second is left out. 
In English, we would say

if:    bob is the parent of jake implies that bob is either the father or mother 
of jake

and:   bob is the father of jake and jake is the father of fred implies that bob is 
the grandfather of fred

then:  if bob is the parent of jake and jake is the father of fred then: either bob 
is jake’s mother or bob is fred’s grandfather

Resolution is actually more complex than these simple examples illustrate. 
In particular, the presence of variables in propositions requires resolution to find 
values for those variables that allow the matching process to succeed. This process 
of determining useful values for variables is called unification. The temporary 
assigning of values to variables to allow unification is called instantiation.

It is common for the resolution process to instantiate a variable with a 
value, fail to complete the required matching, and then be required to backtrack 
and instantiate the variable with a different value. We will discuss unification 
and backtracking more extensively in the context of Prolog.

A critically important property of resolution is its ability to detect any 
inconsistency in a given set of propositions. This is based on the formal prop-
erty of resolution called refutation complete. What this means is that given a 
set of inconsistent propositions, resolution can prove them to be inconsistent. 
This allows resolution to be used to prove theorems, which can be done as 

We started with original propositions:
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wiser(joanne, jake) ⊂ mother(joanne, jake) 

The mechanics of this resolution construction are simple: The terms of the 
left sides of the two clausal propositions are OR’d together to make the left side 
of the new proposition. Then the right sides of the two clausal propositions are 
AND’d together to get the right side of the new proposition. Next, any term 
that appears on both sides of the new proposition is removed from both sides. 
The process is exactly the same when the propositions have multiple terms 
on either or both sides. The left side of the new inferred proposition initially 
contains all of the terms of the left sides of the two given propositions. The new 
right side is similarly constructed. Then the term that appears on both sides of 
the new proposition is removed. For example, if we have

father(bob, jake) ∪  mother(bob, jake) ⊂ parent(bob, jake)
grandfather(bob, fred) ⊂ father(bob, jake) ¨  father(jake, fred) 

resolution says that

mother(bob, jake) ∪  grandfather(bob, fred) ⊂
   parent(bob, jake) ¨  father(jake, fred) 

which has all but one of the atomic propositions of both of the original prop-
ositions. The one atomic proposition that allowed the operation father (bob, 
jake) in the left side of the first and in the right side of the second is left out. 
In English, we would say

if:    bob is the parent of jake implies that bob is either the father or mother 
of jake

and:   bob is the father of jake and jake is the father of fred implies that bob is 
the grandfather of fred

then:  if bob is the parent of jake and jake is the father of fred then: either bob 
is jake’s mother or bob is fred’s grandfather

Resolution is actually more complex than these simple examples illustrate. 
In particular, the presence of variables in propositions requires resolution to find 
values for those variables that allow the matching process to succeed. This process 
of determining useful values for variables is called unification. The temporary 
assigning of values to variables to allow unification is called instantiation.

It is common for the resolution process to instantiate a variable with a 
value, fail to complete the required matching, and then be required to backtrack 
and instantiate the variable with a different value. We will discuss unification 
and backtracking more extensively in the context of Prolog.

A critically important property of resolution is its ability to detect any 
inconsistency in a given set of propositions. This is based on the formal prop-
erty of resolution called refutation complete. What this means is that given a 
set of inconsistent propositions, resolution can prove them to be inconsistent. 
This allows resolution to be used to prove theorems, which can be done as 

In English…?
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We obtained from resolution:

We started with original propositions:
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wiser(joanne, jake) ⊂ mother(joanne, jake) 

The mechanics of this resolution construction are simple: The terms of the 
left sides of the two clausal propositions are OR’d together to make the left side 
of the new proposition. Then the right sides of the two clausal propositions are 
AND’d together to get the right side of the new proposition. Next, any term 
that appears on both sides of the new proposition is removed from both sides. 
The process is exactly the same when the propositions have multiple terms 
on either or both sides. The left side of the new inferred proposition initially 
contains all of the terms of the left sides of the two given propositions. The new 
right side is similarly constructed. Then the term that appears on both sides of 
the new proposition is removed. For example, if we have

father(bob, jake) ∪  mother(bob, jake) ⊂ parent(bob, jake)
grandfather(bob, fred) ⊂ father(bob, jake) ¨  father(jake, fred) 

resolution says that

mother(bob, jake) ∪  grandfather(bob, fred) ⊂
   parent(bob, jake) ¨  father(jake, fred) 

which has all but one of the atomic propositions of both of the original prop-
ositions. The one atomic proposition that allowed the operation father (bob, 
jake) in the left side of the first and in the right side of the second is left out. 
In English, we would say

if:    bob is the parent of jake implies that bob is either the father or mother 
of jake

and:   bob is the father of jake and jake is the father of fred implies that bob is 
the grandfather of fred

then:  if bob is the parent of jake and jake is the father of fred then: either bob 
is jake’s mother or bob is fred’s grandfather

Resolution is actually more complex than these simple examples illustrate. 
In particular, the presence of variables in propositions requires resolution to find 
values for those variables that allow the matching process to succeed. This process 
of determining useful values for variables is called unification. The temporary 
assigning of values to variables to allow unification is called instantiation.

It is common for the resolution process to instantiate a variable with a 
value, fail to complete the required matching, and then be required to backtrack 
and instantiate the variable with a different value. We will discuss unification 
and backtracking more extensively in the context of Prolog.

A critically important property of resolution is its ability to detect any 
inconsistency in a given set of propositions. This is based on the formal prop-
erty of resolution called refutation complete. What this means is that given a 
set of inconsistent propositions, resolution can prove them to be inconsistent. 
This allows resolution to be used to prove theorems, which can be done as 

If bob is the parent of jake implies that bob is either
the father or mother of jake
And bob is the father of jake and jake is the father
of fred implies that bob is the grandfather of fred

16.3 Predicate Calculus and Proving Theorems     719

wiser(joanne, jake) ⊂ mother(joanne, jake) 

The mechanics of this resolution construction are simple: The terms of the 
left sides of the two clausal propositions are OR’d together to make the left side 
of the new proposition. Then the right sides of the two clausal propositions are 
AND’d together to get the right side of the new proposition. Next, any term 
that appears on both sides of the new proposition is removed from both sides. 
The process is exactly the same when the propositions have multiple terms 
on either or both sides. The left side of the new inferred proposition initially 
contains all of the terms of the left sides of the two given propositions. The new 
right side is similarly constructed. Then the term that appears on both sides of 
the new proposition is removed. For example, if we have

father(bob, jake) ∪  mother(bob, jake) ⊂ parent(bob, jake)
grandfather(bob, fred) ⊂ father(bob, jake) ¨  father(jake, fred) 

resolution says that

mother(bob, jake) ∪  grandfather(bob, fred) ⊂
   parent(bob, jake) ¨  father(jake, fred) 

which has all but one of the atomic propositions of both of the original prop-
ositions. The one atomic proposition that allowed the operation father (bob, 
jake) in the left side of the first and in the right side of the second is left out. 
In English, we would say

if:    bob is the parent of jake implies that bob is either the father or mother 
of jake

and:   bob is the father of jake and jake is the father of fred implies that bob is 
the grandfather of fred

then:  if bob is the parent of jake and jake is the father of fred then: either bob 
is jake’s mother or bob is fred’s grandfather

Resolution is actually more complex than these simple examples illustrate. 
In particular, the presence of variables in propositions requires resolution to find 
values for those variables that allow the matching process to succeed. This process 
of determining useful values for variables is called unification. The temporary 
assigning of values to variables to allow unification is called instantiation.

It is common for the resolution process to instantiate a variable with a 
value, fail to complete the required matching, and then be required to backtrack 
and instantiate the variable with a different value. We will discuss unification 
and backtracking more extensively in the context of Prolog.

A critically important property of resolution is its ability to detect any 
inconsistency in a given set of propositions. This is based on the formal prop-
erty of resolution called refutation complete. What this means is that given a 
set of inconsistent propositions, resolution can prove them to be inconsistent. 
This allows resolution to be used to prove theorems, which can be done as 

Then bob is the parent of jake and jake is the father
of fred implies either bob is jake’s mother or bob is
fred’s grandfather
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Resolution is actually more complex than these
simple examples…

We’ll later discuss in terms of Prolog

§ Main idea: Presence of variables in propositions
requires resolution to find values for the variables
that allows matching to succeed
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variables to allow unification
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§ Main idea: Presence of variables in propositions
requires resolution to find values for the variables
that allows matching to succeed

Ø Unification: Finding values for variables in 
propositions that allows matching to succeed

Ø Instantiation: temporary assigning of values to
variables to allow unification

Ø Backtracking: if resolution process to instantiate a
variable with a value fails to complete required
matching, then we backtrack and instantiate variable
with different value



78

Predicate calculus and proving theorems

§ Main idea: Presence of variables in propositions
requires resolution to find values for the variables
that allows matching to succeed

Ø Unification: Finding values for variables in 
propositions that allows matching to succeed

Ø Instantiation: temporary assigning of values to
variables to allow unification

Ø Backtracking: if resolution process to instantiate a
variable with a value fails to complete required
matching, then we backtrack and instantiate variable
with different value

We’ll discuss these more in Prolog
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Either 
(1) single atomic proposition on left side
Or (2) empty left side
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§ One way to simplify resolution process: 
restrict to simpler forms of propositions

Horn Clause

Either 
(1) single atomic proposition on left side
(2) empty left side

Also called
(1) Headed horn clause
(2) Headless Horn clause
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§ One way to simplify resolution process: 
restrict to simpler forms of propositions

Horn Clause example:

(1) Headed horn clause

720      Chapter 16  Logic Programming Languages

follows: We can envision a theorem proof in terms of predicate calculus as 
a given set of pertinent propositions, with the negation of the theorem itself 
stated as a new proposition. The theorem is negated so that resolution can be 
used to prove the theorem by finding an inconsistency. This is proof by con-
tradiction, a frequently used approach to proving theorems in mathematics. 
Typically, the original propositions are called the hypotheses, and the negation 
of the theorem is called the goal.

Theoretically, this process is valid and useful. The time required for reso-
lution, however, can be a problem. Although resolution is a finite process when 
the set of propositions is finite, the time required to find an inconsistency in a 
large database of propositions may be huge.

Theorem proving is the basis for logic programming. Much of what is 
computed can be couched in the form of a list of given facts and relationships 
as hypotheses, and a goal to be inferred from the hypotheses, using resolution.

Resolution on a hypotheses and a goal that are general propositions, even 
if they are in clausal form, is often not practical. Although it may be possible 
to prove a theorem using clausal form propositions, it may not happen in a 
reasonable amount of time. One way to simplify the resolution process is to 
restrict the form of the propositions. One useful restriction is to require the 
propositions to be Horn clauses. Horn clauses only can be in one of two forms: 
They have either a single atomic proposition on the left side or an empty left 
side.1 The left side of a clausal form proposition is sometimes called the head, 
and Horn clauses with left sides are called headed Horn clauses. Headed Horn 
clauses are used to state relationships, such as

likes(bob, trout) ⊂  likes(bob, fish) ¨  fish(trout) 

Horn clauses with empty left sides, which are often used to state facts, are 
called headless Horn clauses. For example,

father(bob, jake) 

Most, but not all, propositions can be stated as Horn clauses. The restric-
tion to Horn clauses makes resolution a practical process for proving theorems.

16.4 An Overview of Logic Programming
Languages used for logic programming are called declarative languages, because 
programs written in them consist of declarations rather than assignments and 
control flow statements. These declarations are actually statements, or propo-
sitions, in symbolic logic.

One of the essential characteristics of logic programming languages is their 
semantics, which is called declarative semantics. The basic concept of this 
semantics is that there is a simple way to determine the meaning of each state-
ment, and it does not depend on how the statement might be used to solve a 

 1. Horn clauses are named after Alfred Horn (1951), who studied clauses in this form.
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(1) Headed horn clause

(2) Headless Horn clause
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follows: We can envision a theorem proof in terms of predicate calculus as 
a given set of pertinent propositions, with the negation of the theorem itself 
stated as a new proposition. The theorem is negated so that resolution can be 
used to prove the theorem by finding an inconsistency. This is proof by con-
tradiction, a frequently used approach to proving theorems in mathematics. 
Typically, the original propositions are called the hypotheses, and the negation 
of the theorem is called the goal.

Theoretically, this process is valid and useful. The time required for reso-
lution, however, can be a problem. Although resolution is a finite process when 
the set of propositions is finite, the time required to find an inconsistency in a 
large database of propositions may be huge.

Theorem proving is the basis for logic programming. Much of what is 
computed can be couched in the form of a list of given facts and relationships 
as hypotheses, and a goal to be inferred from the hypotheses, using resolution.

Resolution on a hypotheses and a goal that are general propositions, even 
if they are in clausal form, is often not practical. Although it may be possible 
to prove a theorem using clausal form propositions, it may not happen in a 
reasonable amount of time. One way to simplify the resolution process is to 
restrict the form of the propositions. One useful restriction is to require the 
propositions to be Horn clauses. Horn clauses only can be in one of two forms: 
They have either a single atomic proposition on the left side or an empty left 
side.1 The left side of a clausal form proposition is sometimes called the head, 
and Horn clauses with left sides are called headed Horn clauses. Headed Horn 
clauses are used to state relationships, such as

likes(bob, trout) ⊂  likes(bob, fish) ¨  fish(trout) 

Horn clauses with empty left sides, which are often used to state facts, are 
called headless Horn clauses. For example,

father(bob, jake) 

Most, but not all, propositions can be stated as Horn clauses. The restric-
tion to Horn clauses makes resolution a practical process for proving theorems.

16.4 An Overview of Logic Programming
Languages used for logic programming are called declarative languages, because 
programs written in them consist of declarations rather than assignments and 
control flow statements. These declarations are actually statements, or propo-
sitions, in symbolic logic.

One of the essential characteristics of logic programming languages is their 
semantics, which is called declarative semantics. The basic concept of this 
semantics is that there is a simple way to determine the meaning of each state-
ment, and it does not depend on how the statement might be used to solve a 

 1. Horn clauses are named after Alfred Horn (1951), who studied clauses in this form.
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follows: We can envision a theorem proof in terms of predicate calculus as 
a given set of pertinent propositions, with the negation of the theorem itself 
stated as a new proposition. The theorem is negated so that resolution can be 
used to prove the theorem by finding an inconsistency. This is proof by con-
tradiction, a frequently used approach to proving theorems in mathematics. 
Typically, the original propositions are called the hypotheses, and the negation 
of the theorem is called the goal.

Theoretically, this process is valid and useful. The time required for reso-
lution, however, can be a problem. Although resolution is a finite process when 
the set of propositions is finite, the time required to find an inconsistency in a 
large database of propositions may be huge.

Theorem proving is the basis for logic programming. Much of what is 
computed can be couched in the form of a list of given facts and relationships 
as hypotheses, and a goal to be inferred from the hypotheses, using resolution.

Resolution on a hypotheses and a goal that are general propositions, even 
if they are in clausal form, is often not practical. Although it may be possible 
to prove a theorem using clausal form propositions, it may not happen in a 
reasonable amount of time. One way to simplify the resolution process is to 
restrict the form of the propositions. One useful restriction is to require the 
propositions to be Horn clauses. Horn clauses only can be in one of two forms: 
They have either a single atomic proposition on the left side or an empty left 
side.1 The left side of a clausal form proposition is sometimes called the head, 
and Horn clauses with left sides are called headed Horn clauses. Headed Horn 
clauses are used to state relationships, such as

likes(bob, trout) ⊂  likes(bob, fish) ¨  fish(trout) 

Horn clauses with empty left sides, which are often used to state facts, are 
called headless Horn clauses. For example,

father(bob, jake) 

Most, but not all, propositions can be stated as Horn clauses. The restric-
tion to Horn clauses makes resolution a practical process for proving theorems.

16.4 An Overview of Logic Programming
Languages used for logic programming are called declarative languages, because 
programs written in them consist of declarations rather than assignments and 
control flow statements. These declarations are actually statements, or propo-
sitions, in symbolic logic.

One of the essential characteristics of logic programming languages is their 
semantics, which is called declarative semantics. The basic concept of this 
semantics is that there is a simple way to determine the meaning of each state-
ment, and it does not depend on how the statement might be used to solve a 

 1. Horn clauses are named after Alfred Horn (1951), who studied clauses in this form.

Often used to state fact
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follows: We can envision a theorem proof in terms of predicate calculus as 
a given set of pertinent propositions, with the negation of the theorem itself 
stated as a new proposition. The theorem is negated so that resolution can be 
used to prove the theorem by finding an inconsistency. This is proof by con-
tradiction, a frequently used approach to proving theorems in mathematics. 
Typically, the original propositions are called the hypotheses, and the negation 
of the theorem is called the goal.

Theoretically, this process is valid and useful. The time required for reso-
lution, however, can be a problem. Although resolution is a finite process when 
the set of propositions is finite, the time required to find an inconsistency in a 
large database of propositions may be huge.

Theorem proving is the basis for logic programming. Much of what is 
computed can be couched in the form of a list of given facts and relationships 
as hypotheses, and a goal to be inferred from the hypotheses, using resolution.

Resolution on a hypotheses and a goal that are general propositions, even 
if they are in clausal form, is often not practical. Although it may be possible 
to prove a theorem using clausal form propositions, it may not happen in a 
reasonable amount of time. One way to simplify the resolution process is to 
restrict the form of the propositions. One useful restriction is to require the 
propositions to be Horn clauses. Horn clauses only can be in one of two forms: 
They have either a single atomic proposition on the left side or an empty left 
side.1 The left side of a clausal form proposition is sometimes called the head, 
and Horn clauses with left sides are called headed Horn clauses. Headed Horn 
clauses are used to state relationships, such as

likes(bob, trout) ⊂  likes(bob, fish) ¨  fish(trout) 

Horn clauses with empty left sides, which are often used to state facts, are 
called headless Horn clauses. For example,

father(bob, jake) 

Most, but not all, propositions can be stated as Horn clauses. The restric-
tion to Horn clauses makes resolution a practical process for proving theorems.

16.4 An Overview of Logic Programming
Languages used for logic programming are called declarative languages, because 
programs written in them consist of declarations rather than assignments and 
control flow statements. These declarations are actually statements, or propo-
sitions, in symbolic logic.

One of the essential characteristics of logic programming languages is their 
semantics, which is called declarative semantics. The basic concept of this 
semantics is that there is a simple way to determine the meaning of each state-
ment, and it does not depend on how the statement might be used to solve a 

 1. Horn clauses are named after Alfred Horn (1951), who studied clauses in this form.
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follows: We can envision a theorem proof in terms of predicate calculus as 
a given set of pertinent propositions, with the negation of the theorem itself 
stated as a new proposition. The theorem is negated so that resolution can be 
used to prove the theorem by finding an inconsistency. This is proof by con-
tradiction, a frequently used approach to proving theorems in mathematics. 
Typically, the original propositions are called the hypotheses, and the negation 
of the theorem is called the goal.

Theoretically, this process is valid and useful. The time required for reso-
lution, however, can be a problem. Although resolution is a finite process when 
the set of propositions is finite, the time required to find an inconsistency in a 
large database of propositions may be huge.

Theorem proving is the basis for logic programming. Much of what is 
computed can be couched in the form of a list of given facts and relationships 
as hypotheses, and a goal to be inferred from the hypotheses, using resolution.

Resolution on a hypotheses and a goal that are general propositions, even 
if they are in clausal form, is often not practical. Although it may be possible 
to prove a theorem using clausal form propositions, it may not happen in a 
reasonable amount of time. One way to simplify the resolution process is to 
restrict the form of the propositions. One useful restriction is to require the 
propositions to be Horn clauses. Horn clauses only can be in one of two forms: 
They have either a single atomic proposition on the left side or an empty left 
side.1 The left side of a clausal form proposition is sometimes called the head, 
and Horn clauses with left sides are called headed Horn clauses. Headed Horn 
clauses are used to state relationships, such as

likes(bob, trout) ⊂  likes(bob, fish) ¨  fish(trout) 

Horn clauses with empty left sides, which are often used to state facts, are 
called headless Horn clauses. For example,

father(bob, jake) 

Most, but not all, propositions can be stated as Horn clauses. The restric-
tion to Horn clauses makes resolution a practical process for proving theorems.

16.4 An Overview of Logic Programming
Languages used for logic programming are called declarative languages, because 
programs written in them consist of declarations rather than assignments and 
control flow statements. These declarations are actually statements, or propo-
sitions, in symbolic logic.

One of the essential characteristics of logic programming languages is their 
semantics, which is called declarative semantics. The basic concept of this 
semantics is that there is a simple way to determine the meaning of each state-
ment, and it does not depend on how the statement might be used to solve a 
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