Data Structures and Algorithm
Analysis (CSC317)

Hash tables (part2)

Hash table

We have elements with key and satellite data

Operations performed: Insert, Delete,
Search/lookup

We don’t maintain order information
We'll see that all operations on average O(1)

But worse case can be O(n)

Review: Collision resolution by chaining

/] T k| /]

k| T | T 6]/

k| T K| /]

(actual
keys)

Hash table analyses

« Worst case: all n elements map to one slot
(one big linked list...).

O(n)

Hash table analyses

« Average case: Define:

m = number of slots

n = number elements (keys) in hash table
What was n in previous diagram? (answer: 8)
alpha = load factor: o = i

m

Intuitively, alpha is average number elements
per linked list.

Hash table analyses

Define:

Unsuccessful search: new key searched for
doesn’t existin hash table (we are
searching for a new friend, Sarah, whois
not yet in hash table)

Successful search: key we are searching
for already exists in hash table (we are
searching for Tom, who we have already
stored in hash table)

Hash table analyses

Theorem:

« Assuming simple uniform hashing, search
takes on average O(alpha + 1)
Here the actual searchtime is O(alpha)
and the added 1 is the constant time to
compute a hash function on the key that is
being searched

Note: we’ll prove for unsuccessful search,
but successful search cannotbe worse.

Hash table analyses:

Theorem interpretation:
* nN=m

O(1+1)=0(1)

e nN=2m

O(2+1)=0()

° n=m3

O(m*+1)#06(1)

« Summary: we say constant time on average whenn
and m similar order, but not generally guaranteed

Hash table analyses

Theorem:

Intuitively: Search for key k, hash function
will map onto slot h(k). We need to search
through linked list in the slot mapped to, up
until the end of the list (because key is not
found = unsuccessful search). For n=2m,
on averagelinkedlistis length 2. More
generally, on average lengthis alpha, our
load factor.

Hash table analyses

Proof with indicator random variables:

« Considerkeys jin hash table (n of
them), and key k not in hash table that
we are searchingfor. For eachj:

X — 1 if key X hashes to same slotas key |
J 0 otherwise

Hash table analyses

Proof with indicator random variables:

« Considerkeys jin hash table (n of
them), and key k not in hash table that
we are searchingfor. For eachj:

X — 1if h(X) = h(J) (same as before, just as equation)
J 0 otherwise

Hash table analyses

Proof with indicator random variables:

« As with indicator (binary) random variables:
E[X,]=1Pr(X, =1)+0Pr(X, =0)=Pr(X, =1)

« By our definition of the random variable:

= Pr(h(x) = h(j))
« Since we assume simple uniform hashing:

_ 1

m

Hash table analyses
Proof with indicator random variables:

 We want to consider key x with regards
to every possible key jin hash table:

E[ixj]:

« Linearity of expectations:

-Saxi-3r-t

om m

Hash table analyses

« We've proved that average searchtime is
O(alpha) for unsuccessful search and
uniform hashing. Itis O(alpha+1)if we
also count the constant time of mapping
a hash function for a key

Hash table analyses
Theorem:

« Assuming simple uniform hashing, successful
search takes on average O(alpha + 1)
Here the actual searchtime is O(alpha)
and the added 1 is the constant time to
compute a hash function on the key that is

being searched

 Intuitively, successful search should take less than
unsuccessful. Proof in book with indicator random
variables; more involved than before; we won’t

prove here.

What makes a good hash function?

« Simple uniform hashing: Each key equally likely to
hash to each of m slots (1/m probability)

* Could be hard in practice: we don’t always
know the distributions of keys we will encounter
and want to store — could be biased

« We would like to choose hash functions that
do a good job in practice at distributing
keys evenly

Example 1 for potential bias

« Key = phone number

Key1 = 305 6215985
Key2 = 305 7621088
Key3 =786 7447721

« Bad hash function: First three digits of phone
number (eg, whatif all friends in Miami, and
in any case likely to have patterns of regularity)

« Betteralthough could still have patterns: last
3 digits of phone number

Example 2 for potential bias

Hash function: h(k) =k mod 100
with k the key

Keys happen to be all even numbers

Key1 =1986

Key1 mod 100 = 86
Key2 =2014

key2 mod 100 =14

Pattern: keys all map to even values.
All odd slots of hash table unused!

How do we determine the hash
function?

We'll discuss:

« Division method — simple, fast, implementation

Division method

* h(k)=kmodm

m = number of slots
K =key

 Example: m=20; k=91
h(k)=k mod m = 11

Division method: pros

« Any key willindeed map to one of m slots
(as we want from a hash function, mapping
a key to one of m slots)

 Fastandsimple

Division method: cons and
iImportant to pay attention to...

« Needto avoid certain values of m to avoid
bias (as in the even number example)

« Goodto do:
Often chosenin practice: mthat is a prime

number and not too close to base of 2
or10

Resolution to collisions

 We discussedresolution by chaining

* Another approach: open addressing

Open addressing hash tables

* Only one object per slot allowed

n
e Asaresult: g=—<1
m

(n<m)

(as before alphais load factor, n number keys in
Table, and m number slots)

* No pointers orlinked list
« Good approachif space is important
* Deleting keys turns out more tricky than chaining

Open addressing

* Only one object per slot allowed

n
e Asaresult: g=—<1
m

(n<m)

(as before alphais load factor, n number keys in
Table, and m number slots)

Main approach: If collision, keep probing hashtable
until empty slotis found. Hash functionis now a
sequence...

Open addressing
We’'ll discuss two types:
« Linearprobing

* Double hashing (nextclass)

Linear probing

When inserting into hash table (also
when searching)-

 |f hash function resultsin collision, try the
next available slot; if that results in collision
try the next slot after that, and so on (if slot
3 is full, try slot 4, then slot 5, then slot 6, and

soon)

Linear probing

More formally:

h(k,0) hash function for key k and first
probe (= first time try to put in table)

h(k,1) hash function for key k and second
probe (= second time try to putin table)

h(k,2) hash function for key k and 3rd
probe (= third time try to put in table)

Linear probing
More formally: i(k,i) = (h(k)+i)mod m
h(k) is a regular hash function, like before

i indicates number slots to skip for probe |
(e.g., attempttoinsertintheitime)

modm is to make sure it is mapped overall
to one of m slots in the hash table

Linear probing
h(k,i)=(h(k)+i)modm
h(k)=kmod7

* Insertkeys2;6;9; 16

Example:

« Ontheboard...

(keys 9 and 16 should resultin collision
and choosing next available slots)

Linear probing

* Pro: easytoimplement

« Con:canresultin primary clustering
keys can clusterby taking adjacent slots in
hash table, since each time searching for

next available slot when there is collision

= longer search time

Linear probing

* Pro: easytoimplement

« Con:canresultin primary clustering
keys can clusterby taking adjacent slots in
hash table, since each time searching for
next available slot when there is collision

= longer search time

What about if we insert 2 or 3 slots away instead
of 1 slotaway?

Linear probing

What about if we insert 2 or 3 slots away instead
of 1 slotaway?

Answer: still have problem that if two keys
initially mapped to same hash slot, they have
identical probe sequences, since offset of next
slotto check doesn’t depend on key

Linear probing

What about if we insert 2 or 3 slots away instead
of 1 slotaway?

Answer: still have problem that if two keys
initially mapped to same hash slot, they have

identical probe sequences, since offset of next
slotto check doesn’t depend on key

What to do? Make offset determined by another
key function—double hashing!

Analysis open addressing

Theorem: assuming uniform hashing (each probe
sequence equally likely) and load factor o = LapS
the expected number of probes of an m
unsuccessfulsearchis 1

l-o

Analysis open addressing

Example: a=.5
« Tableis half full

 Two probes on average:

| 1
_ :2
- 1-5

Analysis open addressing

Example: =29

 Tenprobesonaverage:

1 1

= =10
l-a 1-9

* Average number probesincreases as alpha
Increases

 What happenswhen alpha close to 1?

Intuition for analysis

(we won’t formally prove, but provide
the main intuitions)

Probability that first probe leadsto a
slotin the hash table thatis occupied.

Prob(first probe slot occupied) ”* _ ,

n
m

Intuition for analysis

Probability that first and second probes lead to a
slotin the hash table that is occupied:

Prob(first and second probe occupied)

ﬁn—l

mm-—1

(because fromfirst probe one slotis surely
occupied, so m-1 slots left with n-1 keys)

Intuition for analysis

Probability that first and second probes lead to a
slotin the hash table that is occupied:

Prob(first and second probe occupied)

n n—1 5
— <O
mm-—1

Intuition for analysis
Putting this together, expected number of probes:
« We always make the first probe:

* Prob first probe in occupiedslot: £ _
m

* Probfirstand second probe in occupied slot:

n n—1 5
e <

mm-—1

Intuition for analysis
Putting this together, expected number of probes:
« We always make the first probe:

* Prob first probe in occupiedslot: £ _
m

* Probfirstand second probe in occupied slot:

n n—1 5
e <

mm-—1

Intuition for analysis

Putting this together, expected number of probes
bounded above by:

l+o*+a’ +...

Intuition for analysis

Putting this together, expected number of probes
bounded above by:

l+o*+a’ +...

alpha smaller than one and geometric series...

Intuition for analysis

Putting this together, expected number of probes
bounded above by:

l+o*+a’ +...

alpha smaller than one and bounded above by
infinite geometric series...
1

l+o*+a’+...=——
-«

Analysis open addressing

Successful search: more involved, but can’t be
worse than unsuccessful search

(we won’t analyze)

Analysis open addressing

Does _L_ expected number probes always hold

-«

In practice?

Answer: No.
Depends on open addressing approach and whether
uniform hashing assumptionis achieved.

Double hashing is in practice better than linear
probing.

Universal hashing

« Not for assignments/quiz

« [fadversarylearns hash function, then can exploit
the system by sending data that all map to same
slotin hash table (slow down or halt a system)

« Solutions: (1) Cryptographic hash function that is
very hard to decipher; (2) Randomly choose
hash functions from a whole family of hash
functions, so that adversary doesn’tknow which
random function was chosen

Universal hashing

« There are practical ways of designing so-called universal
hash functions, in a way that the keys spread evenly
into the slots and average probes of _!
holds I-a

« Example:
h(k)=[(ak + b)mod plmodm

a, b are random; p prime number bigger than universe of
keys

