Data Structures and Algorithm
Analysis (CSC317)

Hash tables

Hash table

 We have elements with key and satellite data

* Operations performed: Insert, Delete,
Search/lookup

« We don’t maintain order information
« We'll see that all operations on average O(1)

 But worse case can be O(n)

Hash table

Simple implementation: If universe of keys

comes from a small set of integers [0..9],
we can store directly in array using the
keys as indices into the slots.

U
(universe of keys)
oe 6@

N o= O

key

\

satellite data

/

\‘\\‘\H\\ﬂ

IR

Hash table

« Simple implementation: If universe of keys
comes from a small set of integers [0..9],
we can store directly in array using the
keys as indices into the slots.

NN\ =

L O S

\‘\\‘\
é é
L

key satellite data

\ _/

U
(universe of keys)
oe 6e®

2
3

Y Y

 Thisis also called a direct-addresstable
« Searchtime justlike inarray — O(1) !

Example: Array versus Hash table

* Imagine we have keys corresponding to friends that
we want to store

Example: Array versus Hash table

Imagine we have keys corresponding to friends
that we want to store

Could use huge array, with each friend’s name
mapped to some slot in array (eg, one slot in
array for every possible name; each letter one
of 26 characters, n letters in each name..)

Example: Array versus Hash table

| 2 $

John = A[23] Sally = A[2222177]

Pros/cons?

Example: Array versus Hash table

| $ $
I |
John = A[23] Sally = A[2222177]
Pros/cons?

 We couldinsert, find key, and delete elementin
O(1) time — very fast!

Example: Array versus Hash table

| $ $ |
I I
John = A[23] Sally = A[2222177]
Pros/cons?

 We couldinsert, find key, and delete elementin
O(1) time — very fast!

* But huge waste of memory, with many slots empty
IN many applications

Example: Array versus Hash table

| 2 $

John = A[23] Sally = A[2222177]

Pros/cons?

 We couldinsert, search key, and delete array
elementin O(1) time — very fast!

« But huge waste of memory, with many slots
empty
In many applications

-~ a B [] u] - A PN AN AN -~

Example: versus linked list

* An alternative might be to use a linked
list with all the friend names linked

John -> Sally -> Bob

* Pro: This is not wasteful because we only
store the names that we want

« Con: But search time is now O(n)

 We want an approach thatis fast, and not
so wasteful!

Example: versus linked list

« We'll eventually want best of both
worlds — advantages of array and of
linked list

Hash table

« Extremely useful alternative to static array
for insert, search, and delete in O(1) time
(on average)— VERY FAST

« Useful when universeis large, but at any
given time number of keys stored is small
relative to total number of possible keys
(not wasteful like a huge static array)

 We usually don’t store key directly as index
into array, but rather compute a hash
function of the key k, h(k), as index

Hash table

* What problem can arise if we map keys to
slots in a hash table? Answer: collisions;
two keys map to same slot.

h(k;)
h(k,)
k
(actual h(k,) = h(ks)
keys)
h(k,)

m—1

Collisions
* Are guaranteed to happen when number of

keys in table greater than number of slots
in table

« Orif "bad” hashing function — all keys were
hashed to just one slot of hash table —
more later

 Even by chance, collisions are likely to
happen. Consider keys that are birthdays.
Recall the birthday paradox — room of 28
people, then 2 people have a 50 percent
chance to have same birthday.

Collisions
« Sowe have to deal with collisions!

e (One solution?

Collisions
« Sowe have to deal with collisions!

* One solution?

Collision resolution by chaining

Collision resolution by chaining

Y

A

(actual — S ks| Tl k| Tl |k
o va

> / k3

> /| kg - ke

Hash table analyses

 Worst case: all n elements map to one slot
(one big linked list...).

O(n)

Hash table analyses

* Average case: Define:
m = number of slots
n = number elements (keys) in hash table

What was n in previous diagram? (answer: 8)

alpha = load factor: o = —
m

Intuitively, alphais average number elements
per linked list.

Hash table analyses

Example:let’'s take n = m; alpha = 1

Good hash function: each element of hash
table has one linked list

Bad hash function: hash function always
maps to first slot of hash table, one linked
list size n, and all other slots are empty

Hash table analyses

Good hash function should spread the keys

In a balanced way across th
hash table

Each key should be equally

e slots of the

Ikely to hash

into each of the m slots, and each key

should be independentof w
hashed to

nere otherkeys

This is called simple uniform hashing:
prob(key k hashesto each slot) = 1

m

Hash table analyses

Define:

Unsuccessful search: new key searched for
doesn’t exist in hash table (we are
searching for a new friend, Sarah, who is

not yet in hash table)

Successful search: key we are searching
for already exists in hash table (we are
searching for Tom, who we have already
stored in hash table)

Hash table analyses

Theorem:

« Assuming simple uniform hashing,
unsuccessful search takes on average
O(alpha + 1)

Here the actual search time is O(alpha)
and the added 1 is the constanttime to
compute a hash function on the key that is

being searched

Hash table analyses
Theorem interpretation:
°* N=m

O(1+1)=06(1)

e nN=2m

O2+1)=001)

3
* N=m

O(m” +1)#06()

« Summary: we say constant time on average
when n and m similar order, but not generally
guaranteed

Hash table analyses

Theorem:

Intuitively: Search for key k, hash function
will map onto slot h(k). We need to search
through linked list in the slot mapped to, up
until the end of the list (because key is not
found = unsuccessful search). For n=2m,
on average linked list is length 2. More
generally, on average length is alpha, our
load factor.

Hash table analyses

Proof with indicator random variables:

 Considerkeys jin hash table (n of
them), and key k not in hash table that
we are searching for. For eachj:

Y — 1 if key x hashes to same slot as key |
J 0 otherwise

Hash table analyses

Proof with indicator random variables:

 Considerkeys jin hash table (n of
them), and key k not in hash table that
we are searching for. For eachj:

X — 1if h(X) = h(j) (same as before, just as equation)
J 0 otherwise

Hash table analyses
Proof with indicator random variables:

* As with indicator (binary) random
variables:

E[X |=1Pr(X;, =1)+0Pr(X, =0)=Pr(X;, =1)

J

* By our definition of the random variable:

= Pr(h(x)=h(j))
« Since we assume uniform hashing:

1

m

Hash table analyses
Proof with indicator random variables:

 We want to consider key x with regards
to every possible key J in hash table:

E[ixj] =

* Linearity of expectations:

—zE 2— — =«

omom

Hash table analyses

 We've proved that average search time is
O(alpha)for unsuccessful search and
simple uniform hashing. Itis O(alpha+1)if
we also count the constant time of mapping
a hash function for a key

Hash table analyses
Theorem:

* Assuming simple uniform hashing, successful
search takes on average O(alpha+ 1)
Here the actual search time is O(alpha)
and the added 1 is the constanttime to
compute a hash function on the key that is
being searched

 Intuitively, successful search should take less
than unsuccessful. Proof in book with indicator
random variables: more involved than before:
we won't prove here.

