Greedy algorithms — part 2

Activity selection problem:

Last class we defined the problem and developed a (somewhat tedious) Dynamic
Programming approach. Here we will show the greedy algorithm solution.

Greedy solution to activity selection problem:

Main idea: What is we could just make one choice — a greedy choice — to add to
our optimal solution. That is, rather than considering all possible choices, we
make a single choice.

Look back at original example and remember that it was pre-sorted by finish time.

Greedy choice: Choose the activity that ends earliest, a1, to give most time for
putting in other activities.

Remaining subproblem: If we make a greedy choice, we have one remaining
subproblem: find activities that start after a1 finishes (why?)

Formally: Greedy strategy after choosing a1: find best greedy solution in set S1
(set that starts after a1 finishes).

Main algorithm idea: repeatedly choose activity that finishes first, and then keep
only set of compatible activities and choose from the remaining set (until set is

empty).

Main structure for greedy algorithm:

1. Make a choice (single choice!)

2. Solve remaining subproblem recursively

Caveat: greedy algorithms don’t always give optimal solution. It does here
(theorem in book). Problem sets: will see examples in which greedy solution is
not always optimal.

Pseudo code: We can write out pseudo code as recursive or as bottom up. Here
we will show bottom up, which is more intuitive. But you could see recursive in
the book.

Main sketch of code for recursive:

Recursive-activity-selector(s,f,k,n) // for choice k, start times s, finish times f

1. Find first activity in remaining set Sk = {ak+1, ak+2, ... an} that starts after ak
finishes

2. Return that activity (which we denote am with m>=k+1) and recurse on the
remaining activities for this choice m: Recursive-activity-selector(s,f,m,n)

Bottom-up:

GREEDY-ACTIVITY-SELECTOR (s,)
1 n = s.length

2 A={a}

3 k=1

4 form = 2ton

5 if s[m] > f[k]

6 A= AU{a,}
7 k =m

8 return A4

Run time: O(n)
[Plus if counting pre-sorting of finish times: O(n log n)]

Main sketch of proof that greedy choice is optimal:

Theorem (simplified from book!): Consider subproblem Sk that has am as the
earliest finish time in Sk, and has other activities. Define Ak as the maximum size
subset of compatible activities in Sk. Then the claim is that am is included in Ak.

Proof sketch: Let aj be the activity in Ak (the optimal subset) with the earliest
finish time.

Then Ak = {aj, and other activities that are themselves compatible}

a. If aj is equal to am we are done (am is in the optimal solution of some max
size subset of compatible activities)

b. If aj is not equal to am, then we construct a new set Ak’, in which we remove
aj and we add am:

Ak’ = Ak — {aj} + {am}

(note: book uses union operation instead of +; here we just use minus and plus
for removing and adding an activity from the set)

Then: Ak’ = {am, and other activities that are themselves compatible}
Since am has earliest finish time in original set Sk, then fm <= fj

So since Ak was compatible, our new set Ak’ is also compatible, and includes
the same number of activities as in Ak

(so again am is in the optimal solution of some max size subset of compatible
activities)

Greedy algorithms: Two main properties:

1. Greedy choice property: At each decision point, make the choice that is best at
the moment. We typically show that if we make a greedy choice, only one
property remains (unlike dynamic programming, where we need to solve multiple
subproblems to make a choice)

2. Optimal substructure: This was also a hallmark of dynamic programming. In
greedy algorithms, we can show that having made the greedy choice, then a
combination of the optimal solution to the remaining subproblem and the greedy
choice, gives an optimal solution to the original problem. (note: this is assuming
that the greedy choice indeed leads to an optimal solution; not every greedy
choice does so0).

Greedy vs dynamic:

- both dynamic programming and greedy algorithms use optimal substructure

- but when we have a dynamic programming solution to a problem, greedy
sometimes does or does not guarantee the optimal solution (when not optimal,
can often prove by contradiction; find an example in which the greedy choice
does not lead to an optimal solution)

- could be subtle differences between problems that fit into the two approaches

Example: two knapsack problems.

a. 0-1 knapsack problem

- n items worth vi dollars each, and weighing wi pounds each.

- a thief robbing a store (or someone packing for a picnic...) can carry at most w
pounds in the knapsack and wants to take the most valuable items

- It's called 0-1, because each item can either be taken in whole, or not taken at
all.

b. Fractional knapsack problem:

- same as above, except that thief (or picnic packer) can now take fractions of
items.

Here the fractional knapsack problem (b) has a greedy strateqy that is optimal
but the 0-1 problem (a) does not!

We show the figure in the book, and then give a brief explanation.

Figure:

item 3

item 2 50
item 1 30
20

$60 $100 $120 knapsack
(a)

301 $120

20| $100

e

= $220

20
— 30 $80
l— — +
30| $120
201 $100 20| $100
+ + +
P— — P—
10| $60 10| $60 10| $60
=$160 =$180 = $240
(b) ()

Figure 16.2 An example showing that the greedy strategy does not work for the 0-1 knapsack
problem. (a) The thief must select a subset of the three items shown whose weight must not exceed
50 pounds. (b) The optimal subset includes items 2 and 3. Any solution with item 1 is suboptimal,
even though item 1 has the greatest value per pound. (¢) For the fractional knapsack problem, taking
the items in order of greatest value per pound yields an optimal solution.

Explanation:

a. 0-1: Consider taking items in a greedy manner based on the highest value per
pound. In the 0-1 knapsack problem, this would lead to a contradiction, since
then would take 10 the pound item first with value per pound equal to 6 (non

optimal).

To get the optimal solution for the 0-1 problem, we must compare the solution or
subproblem that includes the 10 pound item, with the solution or subproblem that
excludes it. There are many overlapping subproblems we must compare.

b. Fractional: The fractional does have an optimal greedy solution of filling the
highest value per pound first until the knapsack is full. This works indeed
because we can fill fractions of items, and so proceed until knapsack is entirely

full. See panel (c) in the figure.

Note that: both problems have optimal substructure:

a. 0-1: Consider the most valuable load that weighs at most w pounds. If we
remove item j, the remaining load must be the most valuable load weighing at
most W-wj pounds, that the thief can take from the n-1 original items (excluding
D)

b. Fractional: If we remove weight w from item j (a fraction of the weight of j),

then the remaining load must be the most valuable weighing at most W — w that
the thief can take from the n-1 original items, plus wj — w pounds from item j

Also note: These are well known problems you still hear about in conferences
today; could be for many optimization problems...

