
The Web Learning Pages

Burton Rosenberg

Department of Mathematics

and Computer Science

University of Miami

6 April 1995

Abstract

The Web Learning Pages is a project to rein-
force and accelerate classroom learning in the
Department of Mathematics and Computer
Science at the University of Miami. The doc-
trine followed by these pages is that Web infor-
mation is of a new and unusual type: partly
static, like a book, and partly real-time, like
a conversation. We are trying to exploit this
transitional nature of the Web for more effec-
tive and efficient teaching.

Keywords: education, collaboration envi-
ronments, documents and authoring tools, hy-
permedia, tools, usability, user interface, vir-
tual environments.

1 Introduction

This paper describes a script language in
which programmed education materials can be
easily constructed. The underlying technolo-
gies are HTTP Widgets and Forms. Using the
standard technology of the WWW gives the
materials very high availability. Any one can
access the materials at any time. The contri-
bution of this language is to make the mate-
rials easy to construct, having been organized

into standard widgets which are recalled and
customized with very little effort.

The design of widgets is meant to enshrine
the tradeoff between interactivity and avail-
ability. We are not interested in the very best
or the most amusing animation of pages, but
on the other hand we remain sensitive to the
positive quality an engaging presentation can
have on the learning process. We balance this
against ease of construction. Writing these
pages should be as easy as typing an email
response. If this is achieved, there will be a
sort of slow yet active dialogue between page
writers and page readers.

Although the general aim of electronic
teaching tools is pursued by numerous work-
ers in the education industry, the author is
unaware of any publicly available tools to aid
in the pursuit of this precise goal: to au-
thor in the smallest amount of time possible
supplementary materials available through the
WWW to students which require or desire ad-
ditional contact with course materials. It is
hoped that this project will be a useful tool,
that it will accumulate materials over several
years and provide a medium for sharing devel-
oped materials.

In the next section we analyze how the Web
pages might lead to more effective and effi-

cient education. The analysis presented in this
section is purposefully abstract to prevent us
from committing to too narrow a principle.
An implementation is described in the follow-
ing section. The final section will criticize the
implementation according to how it achieves
these goals.

2 Goals

Here are three remarkable properties of the
Web which we would like to capture in our
Web Learning Pages:

1. The inspired manner in which pages are
linked into a web-like body of inter-
references. What is most stimulating
about these links is their capturing the
interests and personalities of the people
that make these links. Rarely could a set
of static links be as interesting.

2. The new compromise between resources
and availability. What is required is a less
expensive form of conversation. New in-
expensive communication and computa-
tion technologies make highly available,
moderately interactive services a current
possibility. We are willing to tradeoff the
slowness of the conversation against the
expense of full interactivity. In fact, for
thoughtful endeavors, this slowness can
be turned to an advantage. Meanwhile,
by being less expensive, we can afford a
larger scope before overwhelming avail-
able resources. The Learning Pages can
be reached from anywhere at any time.

3. The Web page is a small automaton, using
the original sense of that word. For clar-
ity, we will exaggerate by using the word
“toy”. Toys are more amusing and enjoy-
able than static pages and I claim that

the toy is a more efficient carrier of infor-
mation than static pages. This active na-
ture of the pages can provide them addi-
tional durability and encourage rereading
beyond what is necessary for data trans-
fer.

We hope to create a collection of pages
which function as a toy. While playing
with the toy the reader learns. Literally,
the toy could be a model of what is to be
learned. This approach has been widely
taken. However, the connection can be
more abstract. The toy carries text. The
method of playing with the toy engages
the reader with the text. Both the phys-
ical presence of the text and its meaning
are being relied upon to carry the text’s
message.

Our pages should be moderately captivat-
ing, but require very little attention of the
page writer to maintain and improve. It can
provide a meeting point for discussion, but not
require the bandwidth (or dedicate attention
on the part of the writer) of a real-time, shared
experience. This distinguishes the goals com-
pletely from “tele-learning”. Conceptual fun-
damentals for this project are found in the au-
thor’s early work [1], in Piaget [2] and Papert
[3].

3 Implementation

The molding of text into toys is facilitated
by the implementation of WLP widgets. A
prime directive is that the widgets be easy to
use, that they should write easier than even
HTML.

The page in WLP is called a form, because
it corresponds to a HTML form. Each form is
generally an HTML page, but supplemented
by directives which are directed to the WLP
software. The directives are meant to make

2

convenient the construction of Web Learning
Pages and to automate much of the HTML
authoring. Widgets communicate with each
other by sending messages. The messages are
caught by the WLP system and trigger the
emission of more forms according to a rewrit-
ing system described below.

To introduce the type of widgets we have
implemented, consider the traditional pro-
grammed learning situation: a short text is
presented with several options to choose from
beneath the text. The “correct” option leads
the reader to the next page. The shuffle wid-
get is a convenience to the page writer of this
type of text. The shuffle will automatically
mix the options with each page presentation,
hence the writer is free of the burden of keep-
ing track of which among the answers, A, B,
C, etc., is correct and the reader must pay at-
tention to all the alternatives even the second
time through.

To illustrate the syntax more specifically:
the shuffle widget is written into a form and
each of the options is given a message name:

#Form: EXAMPLE An Example Page
The beautiful city of,
#Shuffle: tal orl mia
Tallahassee
#:
Orlando
#:
Miami
#:
is the capitol of the Sunshine State.
#List: *none all
None of the above.
#:
All of the above
#:

See Figure 1 for how this form appears on
the Web. The symbols introduced by a start-
of-line hash and terminated by a colon are

directives. Directives introduce widgets, de-
fine macros and delineate forms. For wid-
gets which are followed by several text blocks,
two forms are allowed. Either the page writer
specifies the message texts, then the matching
number of text blocks will follow, separated
with the null directive #:, or the writer sim-
ply tags the last text block, and the message
texts are generated automatically.

An example of this second form is the puz-
zle widget which randomly shuffles the text
blocks and presents each one after a check box.
The reader checks two boxes to transpose the
blocks, until the puzzle is solved, that is, un-
til the random shuffle is undone. This widget
can be used to enliven the discussion of C Lan-
guage program structure.

The following program appears
scrambled.
#Puzzle: named_tag

void main
#:

(int argc, char * argv[])
#:

{
#:

printf ("Hello World!\n") ;
#:

}
#:named_tag
#List: *cont exit
Transpose the two checked lines.
#:
Exit from puzzle.
#:
Clicking check boxes, the
reader unscrambles it.

See Figure 2 for the Web output of this form.
Other widgets implemented include,

• a list widget,

• a text widget,

3

• and a digression widget.

The list is like the shuffle, but the text items
are not shuffled. A default choice on a list
is indicated by prefixing the message with an
asterisk. The text widget is very much the text
HTTP widget, and is of limited use at this
point, due to the restricted mechanism that
WLP messages are rewritten.

The digression uses two WLP directives, di-
gress and return, to allow the reader to op-
tionally follow side discussion, and then pop
back to where the reader left off. The digres-
sion is also used to “digress out of” a session.
By digressing out to the Navigator Page, the
reader can save by name the digression infor-
mation and leave the WLP system. Later, the
reader can resume the session by returning to
the Navigator Page and activating the saved
digression information.

The message emitted by a widget is rewrit-
ten to the name of a form using text replace-
ment strings found in wire files. The static
wire file is written and maintained by the page
writer and it serves to connect the pages to-
gether. A dynamic wire file is maintained au-
tomatically for the reader by the WLP system
and implements a mechanism to return to vis-
ited pages. At present, a stack regime of “di-
gressed from” pages is maintained: a message
is tagged as a digression, and enough informa-
tion is pushed into the dynamic wire file to
allow recovery of this page A return directive
causes the last pushed digression to be recov-
ered and removed from the wire file. In order
to make this system work, a unique session
key is created for each session, and the reader
wears this key throughout the session as a hid-
den HTTP variable. To conserve bandwidth,
all state associated with this key is keep in a
working directory on the HTTP server.

The format of the wire
file is message:form-name. The received mes-
sage message is rewritten to the form name

form-name. The messages are arbitrary dot-
delimited strings. A message match can be
against any or all parts of the dot-delimited
string, where wild-card matches are given by
an asterisk. For example, any page can invoke
the rewrite of message “toc” to form “Table-
OfContents” with the following line in the wire
file:

*.toc:TableOfContents

Once the form name has been found, the page
writer’s public html directory is searched for
the file containing the form. These files are
called digests and can contain any number of
forms. To speed the search, we currently re-
quire in this directory the presence of a con-
tents file giving the name of all forms and the
digest in which it resides.

It is the intent of the project that these
many configuration files, the contents file, the
wire file, and the initial entry point to the se-
ries of forms, along with a title for this series
of forms, be easily configured by any writer
via a wlp.conf file in the writer’s public html
directory. This idea has not been further de-
veloped. We were working on a single series
of pages and therefore had no pressing need
to consider issues of maintainability. We chas-
tise this failing here, rather than in the next
section, since the failing is entirely caused by
lack of effort. The next section is reserved for
criticisms aimed squarely at efforts which fell
short of their marks.

4 Experiments and criti-
cisms

An implementation with scripts for learning
the C programming language is now running
at:

http://www.cs.miami.edu/ burt/wlp.html

4

The widget design came directly from our ef-
forts on this specific project. The series con-
sists of seven chapters of which four have been
written. These are collected into six digests
with a total of about 6,800 words (38,500 char-
acters). The CGI is written in Perl and is
about 700 lines long.

The soft-side philosophy of the form design
was to avoid saying anything straight-out. We
demonstrate by example an idea or construct
and ask the student to place it into words, se-
lecting from the multiple choice list, by his or
herself. Students of MTH 596: Operating Sys-
tems and Networks made valuable suggestions
after having used the Learn C material. In
particular, the Navigator Page was a direct re-
sult of their evaluations.

We have two large criticisms of the project.
Both criticism will be related back to the goals
stated in the opening section of this paper.

First, it is difficult to install new widgets.
This works against the tradeoff of resources
and availability. It would be best if the forms
could be written as easily as a letter. The
writer could respond to email questions from
readers with new forms, perhaps incorporating
new widgets, by the next few days. At this
moment, the software is rewritten to install a
widget, due to the restricted nature of message
rewriting.

Second, the web-like nature of the pages
is not captured. There is not the feeling of
a journey, of diving into links, when using
the WLP. It is the author’s opinion that the
participatory nature of the Web is crucial in
this regard. This author has not yet found a
method to integrate this into the WLP.

5 Conclusion

The Web is an excellent vehicle for computer
education, especially for supplemental mate-
rials. Motivated students can broaden their

classroom experiences, allowing more to be
done in the four short undergraduate years.
The HTML language provides a reasonable ba-
sis for widget building, however the WLP im-
plementation has not be completely successful
in tapping its power. New widgets are hard to
install: writers are not encouraged to follow
their impulses when creating widgets.

The author misinterpreted his own defini-
tion of “widget,” attaching it wrongly to the
HTML form which resulted by the rewriting
process, rather than the rewriting process it-
self. In a next revision, the WLP widget front
end will concerning itself only with the ex-
traction, presentation and integration of wid-
get parameters, and the actual rewriting code
will be considered external to the WLP soft-
ware. A separate callback mechanism will be
attached to widgets and invoked by widget re-
turn messages to handle those form-like as-
pects required of widgets.

References

[1] Burton Rosenberg, “Reversibility in
Computer Architecture,” B.Sc. Thesis,
MIT 1980.

[2] Jean Piaget, Play, Dreams and Imitation
in Childhood, translated by C. Gattegno
and F. M. Hodgson, Norton, NY, 1962.

[3] Seymour Papert, “Teaching Children
Thinking,” MIT AI Lab Memo No. 247,
Oct. 1971.

5

