
PSEUDO-RANDOMNESS AND STREAM CIPHERS

BURTON ROSENBERG
UNIVERSITY OF MIAMI

Contents

1. Pseudorandomness 1
1.1. PPT bound adversaries 2
1.2. Pseudorandom Generator 3
1.3. Formal definition of pseudorandomness 3
2. Stream Ciphers 4
2.1. Proof of stream ciphers under the assumption of a generator 5
3. Practical Considerations 7
3.1. Multiple messages 7
3.2. Malleability 8
3.3. Key diversity 8

1. Pseudorandomness

Shannon’s Perfect Secrecy definition is equivalent to a model of two interacting Tur-
ing Machines. One is a protocol machine that offers and judges challenges, and the
other an adversary that responds to the challenges, attempting to win the game.
The equivalent model permits a limited sort of attack called the eaves dropping at-
tack, but permits unlimited computational power to the adversary. The result is an
absolutely guarantee of secrecy at the expensive of practicality. An example of an
encryptions achieving perfect secrecy is the Vernam Cipher.

Figure 1 diagrams the interaction between the protocol Π and the adversary A.
The rounds of communication occur in order from top to bottom.

(1) Π sends A the value n in unary.
(2) A responds with a pair of equal length messages, m0 and m1.
(3) Π then chooses one message at random and encrypts it with a randomly

chosen key, and sends the result c to A.
(4) A returns a bit b̃, hoping that it matches the message choice made by Π.

Date: September 13, 2021.
1

2 BURTON ROSENBERG UNIVERSITY OF MIAMI

m_0, m_1

A
c

b
~

b~

1^n

=

m_b

 E~

S

E_k(m_b)K

[π,A](n)
π

Figure 1. The Adversarial Indistinguishability Game.

The outcome of the interaction is a boolean valued random variable denoted
[Π,A](n),

[Π,A](n) : K × Ω −→ {T, F }
(k, ω) 7→ (b̃ == b)

where K ∈ Un is an n bit key chosen uniformly at random, and Ω includes all other
randomness used by the PPT’s as well as the bit b.

The claim of Shannon Perfect Secrecy is equivalent to the expected no-advantage
to the adversary,

P ({ (k, ω) | k ∈ K,ω ∈ Ω, b = b̃ }) = 1/2

when k and b are chosen uniformly, independently at random.

1.1. PPT bound adversaries. The restrictions to achieve perfect secrecy make it
impractical. The more practical outcome results by proposing only polynomial-time
bounded, probabilistic Turing Machine (PPT) as adversaries. Machines of this sort
are generally considered the proper notion of effective computation, computations
that are not only possible theoretically, but use a practical amount of resource and
produce applicable results.

Having introduced an asymptotic complexity notion, in which run time is bounded
by some notion of the problem size n, we must follow through and give all elements
of the problem size bounds. The n is often called the security parameter. This can
often be thought of as the key length. By increasing n, we out-run the resources of
the attacker. For instance, no matter what our encryption, if the key is only 8 bits,
with only 256 possibilities, we do not have security in the practical sense of the word.
But if n is a parameter, then in practice, we can increase n until all likely opponents
will be exhausted by an inefficient search for the key.

PSEUDO-RANDOMNESS AND STREAM CIPHERS 3

Therefore we need to bound the message sizes, and we do so by stating that for
each adversary A it states a polynomial l(n), and that,

l(n) = |m0 | = |m1 |

This is hardly a restriction because the PPT A comes with a polynomial run-time
bound, which is of course a bound on the length of anything the adversary can
produce. If nothing else, l(n) can be that run-time bound.

Definition 1.1. (Adversarial indistinguishablity) An encryption is adversarial indis-
tinguishable if for any PPT adversary A, its advantage is asymptotically negligible
beyond a no–information guess of b,

P ([Π,A](n)) ≤ 1/2 + negl(n)

1.2. Pseudorandom Generator. A Pseudorandom generator is a deterministic
algorithm which outputs a stream of bits that cannot be distinguished by any PPT
adversary from true randomness. The algorithm is deterministic, but its input is a n
bit seed, chosen uniformly from Un. If the stream is l > n bits long, the 2n possible
sequences generated are a tiny fraction of the much larger 2l sequences that result
from l random bit choices.

For pseudorandomness, sampling form this small subset passes all polynomial tests
with only indistinguishably different likelihood as sampling from the full space of
sequences.

1.3. Formal definition of pseudorandomness. A formal definition of pseudo-
randmoness is illustrated in Figure 2. We suppose a PPT algorithm D, called the
distinguisher, which is given either a sample of the generator’s output, or a true
random string. It then judges the string as true or false. Essentially, the measure of
a property of some sort. The output can be randomized, so the result is not exactly
a classification predicate, such as “element of”, which tend to be common func-
tions from input to output. For each string presented we might have a probability
distribution over true/false.

Note also the parameter n, and the polynomial l(n) which specifies an required
expansion amount for the pseudorandom generator.

Definition 1.2 (Bit generator). A bit generator G l
n((s) is a deterministic polynomial

time program taking an n bit input s, called the seed at producing the first l bits of
an infinite string Gn(s),

G l
n : Un −→ U l

s 7→ Gn(s)|l

The polynomial is in inputs n and l.

4 BURTON ROSENBERG UNIVERSITY OF MIAMI

G

l(n)

l(n)n

~

~
R D

1^n

D(r)

Figure 2. Distinguishing Pseudo-random Generators

Definition 1.3 (Indistinguishable). A bit generator Gi(n) is a pseudorandom gen-
erator if for all polynomials l(n) and an PPT distinguishers D,∣∣P (D(G l(n)

n (Un)))− P (D(Ul(n)))
∣∣ ≤ negl(n)

where the distinguisher receives either a uniform random string ũ ∈ Ul(n), or the

output of G
l(n)
n (u) on a uniform random string from u ∈ Un, and the includes all

randomness in D.

2. Stream Ciphers

If a pseudorandom generator exists, the pseudo random stream can be as a pad
such as was done in the Vernam cipher. The key to the cipher would be the n bit
input to the generator, and an unlimited amount of padding would be available for
messages. Ciphers made in this way, based on pseudorandom generators, are called
stream ciphers.

The basic mechanism of a stream cipher and its relationship to the Vernam cipher
is given in Figure 3. Given an l bit message and an n bit key, the l random bits
needed are the output of the function G. If G is pseudorandom, while not perfectly
secret, the encryption is secret against any polynomial-time bounded attack.

As shall be discussed below, this scheme shares with the Vernam certain imper-
fections as well. Notably, the key is one time use. In either case, since encryption is
incremental, the random stream can be long enough, or the expansion great enough,
that a sequence of messages can be encrypted, as long as a fresh region of the random

PSEUDO-RANDOMNESS AND STREAM CIPHERS 5

R R
G

X X
m m

k k

c c

|k| = |m| |k| < |m|

~ ~

Figure 3. Ideal and practical Stream Ciphers

stream is used with each encryption. Synchronizing sender and receiver on which
bits are are being used is a problem in itself.

The security of the encryption scheme is proven relative to the security of the
generator. If P equals NP, there can be no pseudorandom generators. As we have
not yet an answer for the P versus NP question, or results must be contingent,
with conclusions depending upon assumptions. In this case, we will assume that
pseudorandom generators exist and prove under that assumption that our stream
cipher is secure.

The method is called a reduction because we reduce the breaking of a pseudoran-
dom generator to the breaking of a stream cipher. We proposed a distinguisher D
that uses an adversary A as a subcomponent. The transformation of the problem of
generators to encryptions is such that an A that can distinguish messages yields a
D that distinguishes probability distributions. Hence if no such D is assumed, not
such A can exists.

See Figure 4 for the construction reducing an pseudorandom distinguisher to a
encryption adversary.

2.1. Proof of stream ciphers under the assumption of a generator. First
consider the diagram as an example of a [Π,A] adversarial indistinguishability game.
The light shaded box is a composite of two possible encryption boxes. The heavy
bar is meant to compress two diagrams into one. Either the top source is used, in
which case we exclusive or mb with l(n) random bits; or the bottom source is used,

and we exclusive or mb with the output of the generator G
l(n)
n .

In either case, the output measures the ability of A to distinguish between m0 and
m1.

Next consider the diagram as an example of an D distinguisher. The apparatus
surrounded by the heavy dotted line is D. Taken as a black box, fed with a sample

of either Ul(n) or G
l(n)
n (Un), the output measures the ability of D to distinguish the

pseudorandom sequence from a uniformly generated sequence.

6 BURTON ROSENBERG UNIVERSITY OF MIAMI

m_0, m_1

A
c

b
~

b~

1^n

=

x

m_b

G

l(n)

l(n)n

~

~

S

R xor m_bR

D_n(R)

Figure 4. Distinguishing Reduced to Stream Cipher

Hence if the output is constrained by the assumption that Gn is a pseudorandom
sequence, then A is constrained not to be able to distinguish between a perfect cipher
and the stream cipher using Gn.

Theorem 2.1. In the stream cipher constructed in Figure 4, if Gn is a pseudorandom
function then the stream cipher has adversarial indistinguishability.

Proof. For any adversary A, choose an l(n) to bound the message length, this could
be the run time of A.

If we choose the top of two random source of bits, the construction implements
the Vernam cipher. For clarity, this will be protocol Π̃, and the interaction [Π̃,A].
Since the Vernam cipher has perfect secrecy,

P ([Π̃,A](n)) = 1/2.

Since this configuration is also a sample of D(Ul(n)),

P ([Π̃,A](n)) = P (D(Ul(n))).

Likewise, this configuration when used with the source Gn shows that,

P ([Π,A](n)) = P (D(G l(n)
n (Un))),

Assuming that Gn is a pseudorandom function,∣∣P (D(G l(n)
n (Un)))− P (D(Ul(n)))

∣∣ ≤ negl(n)

PSEUDO-RANDOMNESS AND STREAM CIPHERS 7

we have,∣∣P (D(G l(n)
n (Un)))− P (D(Ul(n)))

∣∣ =
∣∣P (D(G l(n)

n (Un)))− P ([Π̃,A](n)))
∣∣

=
∣∣P (D(G l(n)

n (Un)))− 1/2
∣∣

=
∣∣P ([Π,A](n))− 1/2

∣∣
≤ negl(n).

Hence,

P ([Π,A](n)) ≤ 1/2 + negl(n),

Therefore the stream cipher is adversarial indistinguishable. �

3. Practical Considerations

Stream ciphers are widely used for their speed and simplicity. However, as pro-
posed they require two important cautions.

3.1. Multiple messages. If multiple messages are encrypted with the same key, the
encryption schemes presented are completely vulnerable. As a model of a multiple-
message protocol, suppose the adversary can present a list of messages,

{ (m1
0,m

1
1), (m

2
0,m

2
1), . . . }, |mi

0 | = |mi
1 | for all i,

and the protocol responds, after choice of k and b with,

{Ek(m1
b), Ek(m2

b), . . . }

followed by the adversary’s guess b̃ for b.
We could put a bound on the number of messages, however even if only two

messages are allowed, the scheme will not have indistinguishability. The adversary
chooses two messages m0 and m1 and requests,

{ (m0,m0), (m0,m1), . . . }

and calculates,

b̃ =

{
0, if c0 == c1

1, else

This answer is always correct.

8 BURTON ROSENBERG UNIVERSITY OF MIAMI

3.2. Malleability. It is also cautioned that this encryption is malleable. in our
example, when the adverasary is given c = Mk(mb), although the adversary does not
know b, it knows Mk(m1−b),

Mk(m1−b) = r ⊕m1−b

= r ⊕ (mb ⊕mb)⊕m1−b

= Mk(mb)⊕ (mb ⊕m1−b)

= c⊕ (m0 ⊕m1)

since the adversary knows m0 and m1.
Therefore learning c teaches other things. We do not know the use this extra

knowledge can be put to, but we would rather not worry about that.

3.3. Key diversity. The practical need for encrypting multiple messages under a
single key is pressing. Since a stream cipher proceeds incrementally on the next bit
of message, it is possible to consider multiple messages as in their concatenation as
one long message. However, the example of encrypting files shows the problem with
this approach. Each file is encrypted without a notion of how much encryption as
gone before. A more standard approach is a single key along with a randomly chosen
diversifier that is made public, and combined with the secret master key, to create a
per file key.

This is also called the initial vector. But the same idea is used in other contexts
and called the salt and key diversity. One solution to the advice of separate keys for
each application is to mix a publicly derivable tag from the application, perhaps its
name, and salt the one master key diversifying in a systematic way the panoply of
keys.

