
Probabilistic Proof Systems: A Primer

Oded Goldreich
Department of Computer Science and Applied Mathematics

Weizmann Institute of Science, Rehovot, Israel.

June 30, 2008



Contents

Preface 1

Conventions and Organization 3

1 Interactive Proof Systems 4
1.1 Motivation and Perspective . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 A static object versus an interactive process . . . . . . . . . . 5
1.1.2 Prover and Verifier . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Completeness and Soundness . . . . . . . . . . . . . . . . . . 6

1.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 The Power of Interactive Proofs . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 A simple example . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 The full power of interactive proofs . . . . . . . . . . . . . . . 11

1.4 Variants and finer structure: an overview . . . . . . . . . . . . . . . 16
1.4.1 Arthur-Merlin games a.k.a public-coin proof systems . . . . . 16
1.4.2 Interactive proof systems with two-sided error . . . . . . . . . 16
1.4.3 A hierarchy of interactive proof systems . . . . . . . . . . . . 17
1.4.4 Something completely different . . . . . . . . . . . . . . . . . 18

1.5 On computationally bounded provers: an overview . . . . . . . . . . 18
1.5.1 How powerful should the prover be? . . . . . . . . . . . . . . 19
1.5.2 Computational Soundness . . . . . . . . . . . . . . . . . . . . 20

2 Zero-Knowledge Proof Systems 22
2.1 Definitional Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 A wider perspective: the simulation paradigm . . . . . . . . . 23
2.1.2 The basic definitions . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 The Power of Zero-Knowledge . . . . . . . . . . . . . . . . . . . . . . 26
2.2.1 A simple example . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 The full power of zero-knowledge proofs . . . . . . . . . . . . 29

2.3 Proofs of Knowledge – a parenthetical section1 . . . . . . . . . . . . 32
2.3.1 Abstract reflections . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.2 A concrete treatment . . . . . . . . . . . . . . . . . . . . . . 33

I



3 Probabilistically Checkable Proof Systems 35
3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 The Power of Probabilistically Checkable Proofs . . . . . . . . . . . 38

3.2.1 Proving that NP ⊆ PCP(poly, O(1)) . . . . . . . . . . . . . 39
3.2.2 Overview of the first proof of the PCP Theorem . . . . . . . 42
3.2.3 Overview of the second proof of the PCP Theorem . . . . . . 49

3.3 PCP and Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 More on PCP itself: an overview . . . . . . . . . . . . . . . . . . . . 56

3.4.1 More on the PCP characterization of NP . . . . . . . . . . . 56
3.4.2 Stronger forms of PCP systems for NP . . . . . . . . . . . . . 58
3.4.3 PCP with super-logarithmic randomness . . . . . . . . . . . . 59

Bibliographic Notes 61

Bibliography 64

II



Preface

A proof is whatever convinces me.

Shimon Even (1935–2004)

The glory attached to the creativity involved in finding proofs makes us forget that
it is the less glorified process of verification that gives proofs their value. Conceptu-
ally speaking, proofs are secondary to the verification process; whereas technically
speaking, proof systems are defined in terms of their verification procedures.

The notion of a verification procedure presumes the notion of computation and
furthermore the notion of efficient computation. This implicit stipulation is made
explicit in the definition of NP, where efficient computation is associated with
deterministic polynomial-time algorithms. However, as argued next, we can gain a
lot if we are willing to take a somewhat non-traditional step and allow probabilistic
verification procedures.

In this primer, we shall survey three types of probabilistic proof systems, called
interactive proofs, zero-knowledge proofs, and probabilistic checkable proofs. In each
of these three cases, we shall present fascinating results that cannot be obtained
when considering the analogous deterministic proof systems.

Indeed, the use of probabilistic verification procedures is common to the three
aforementioned types of proof systems. We note that the association of efficient
procedures with deterministic polynomial-time procedures is the basis for viewing
NP-proof systems as the canonical formulation of proof systems (with efficient
verification procedures). Now, since the notion of efficient computation has been
extended to include probabilistic polynomial-time procedures, it is natural to allow
the use of randomization also in the context of proof verification. Furthermore, it
is natural to allow also a probability of error, which means that these probabilistic
verification procedures may rule by (overwhelming) statistical evidence. Needless to
say, this probability of error is explicitly bounded (and can be reduced by successive
application of the proof system). Let us briefly review the three aforementioned
types of probabilistic proof systems.

Interactive Proofs. Randomized and interactive verification procedures, giving
rise to interactive proof systems, seem much more powerful than their determinis-
tic counterparts. In particular, such interactive proof systems exist for any set in
PSPACE ⊇ coNP (e.g., for the set of unsatisfied propositional formulae), whereas

1



it is widely believed that some sets in coNP do not have NP-proof systems (i.e.,
NP 6= coNP). We stress that a “proof” in this context is not a fixed and static
object, but rather a randomized (and dynamic) process in which the verifier inter-
acts with the prover. Intuitively, one may think of this interaction as consisting of
questions asked by the verifier, to which the prover has to reply convincingly.

Zero-Knowledge. Such randomized and interactive verification procedures al-
low for the meaningful conceptualization of zero-knowledge proofs, which are of
great theoretical and practical interest (especially in cryptography). Loosely speak-
ing, zero-knowledge proofs are interactive proofs that yield nothing (to the verifier)
beyond the fact that the assertion is indeed valid. For example, a zero-knowledge
proof that a certain propositional formula is satisfiable does not reveal a satisfying
assignment to the formula nor any partial information regarding such an assignment
(e.g., whether the first variable can assume the value true). Thus, the successful
verification of a zero-knowledge proof exhibit an extreme contrast between being
convinced of the validity of a statement and learning nothing else (while receiving
such a convincing proof). It turns out that, under reasonable complexity assump-
tions (i.e., assuming the existence of one-way functions), every set in NP has a
zero-knowledge proof system.

Probabilistically Checkable Proofs. NP-proofs can be efficiently transformed
into a (redundant) form that offers a trade-off between the number of locations
(randomly) examined in the resulting proof and the confidence in its validity. In
particular, it is known that any set in NP has an NP-proof system that supports
probabilistic verification such that the error probability decreases exponentially
with the number of bits read from the alleged proof. These redundant NP-proofs
are called probabilistically checkable proofs (or PCPs). In addition to their concep-
tually fascinating nature, PCPs are closely related to the study of the complexity
of numerous natural approximation problems.

2



Conventions and
Organization

Most results surveyed in this text hold unconditionally. However, these results are
only interesting if NP 6= P.

One important convention. When presenting a proof system, we state all
complexity bounds in terms of the length of the assertion to be proved (which is
viewed as an input to the verifier). Namely, when we say “polynomial-time” we
mean time that is polynomial in the length of this assertion. Indeed, as will become
evident, this is the natural choice in all the cases that we consider. Note that this
convention is consistent with the definition of NP-proof systems.

Notational Conventions. We denote by poly the set of all integer functions
that are upper-bounded by a polynomial, and by log the set of all integer functions
bounded by a logarithmic function (i.e., f ∈ log if and only if f(n) = O(log n)).
All complexity measures mentioned in this chapter are assumed to be constructible
in polynomial-time.

Organization. In Chapter 1 we present the basic definitions and results regard-
ing interactive proof systems. The definition of an interactive proof system is
the starting point for a discussion of zero-knowledge proofs, which is provided in
Chapter 2. Chapter 3, which presents the basic definitions and results regarding
probabilistically checkable proofs (PCP), can be read independently of the other
chapters.

The study of probabilistic proof system is part of complexity theory (cf, e.g., [27]);
in fact, the current text is an abbreviated (and somewhat revised) version of [27,
Chap. 9].

Acknowledgments. We are grateful to an anonymous reviewer for carefully
reading this text and making many useful suggestions.

3



Chapter 1

Interactive Proof Systems

In light of the growing acceptability of randomized and interactive computations,
it is only natural to associate the notion of efficient computation with probabilistic
and interactive polynomial-time computations. This leads naturally to the notion
of an interactive proof system in which the verification procedure is interactive and
randomized, rather than being non-interactive and deterministic. Thus, a “proof”
in this context is not a fixed and static object, but rather a randomized (dynamic)
process in which the verifier interacts with the prover. Intuitively, one may think of
this interaction as consisting of questions asked by the verifier, to which the prover
has to reply convincingly.

The foregoing discussion, as well as the definition provided in Section 1.2, makes
explicit reference to a prover, whereas a prover is only implicit in the traditional
definitions of proof systems (e.g., NP-proof systems). Before turning to the ac-
tual definition, we highlight and further discuss this issue as well as some other
conceptual issues.

1.1 Motivation and Perspective

We shall discuss the various interpretations given to the notion of a proof in dif-
ferent human contexts, and the attitudes that underly and/or accompany these
interpretations. This discussion is aimed at emphasizing that the motivation for
the definition of interactive proof systems is not replacing the notion of a mathemat-
ical proof, but rather capturing other forms of proofs that are of natural interest.
Specifically, we shall contrast “written proofs” with “interactive proofs”, highlight
the roles of the “prover” and the “verifier” in any proof, and discuss the notions
of completeness and soundness which underly any proof. (Some readers may find
it useful to return to this section after reading Section 1.2.)

4



1.1.1 A static object versus an interactive process

Traditionally in mathematics, a “proof” is a fixed sequence consisting of statements
that are either self-evident or are derived from previous statements via self-evident
rules. Actually, both conceptually and technically, it is more accurate to substitute
the phrase “self-evident” by the phrase “commonly agreed upon” (because, at the
last account, self-evidence is a matter of common agreement). In fact, in the
formal study of proofs (i.e., logic), the commonly agreed statements are called
axioms, whereas the commonly agreed rules are referred to as derivation rules.
We highlight a key property of mathematical proofs: these proofs are fixed (static)
objects.

In contrast, in other areas of human activity, the notion of a “proof” has a
much wider interpretation. In particular, in many settings, a proof is not a fixed
object but rather a process by which the validity of an assertion is established.
For example, in the context of law, withstanding a cross-examination by an op-
ponent, who may ask tough and/or tricky questions, is considered a proof of the
facts claimed by the witness. Likewise, various debates that take place in daily
life have an analogous potential of establishing claims and are then perceived as
proofs. This perception is quite common in philosophical and political debates,
and applies even in scientific debates. Needless to say, a key property of such de-
bates is their interactive (“dynamic”) nature. Interestingly, the appealing nature
of such “interactive proofs” is reflected in the fact that they are mimicked (in a
rigorous manner) in some mathematical proofs by contradiction, which emulate an
imaginary debate with a potential (generic) skeptic.

Another difference between mathematical proofs and various forms of “daily
proofs” is that, while the former aim at certainty, the latter are intended (“only”)
for establishing claims beyond any reasonable doubt. Arguably, an explicitly bounded
error probability (as present in our definition of interactive proof systems) is an
extremely strong form of establishing a claim beyond any reasonable doubt.

We also note that, in mathematics, proofs are often considered more important
than their consequence (i.e., the theorem). In contrast, in many daily situations,
proofs are considered secondary (in importance) to their consequence. These con-
flicting attitudes are well-coupled with the difference between written proofs and
“interactive” proofs: If one values the proof itself then one may insist on having it
archived, whereas if one only cares about the consequence then the way in which
it is reached is immaterial.

Interestingly, the foregoing set of daily attitudes (rather than the mathematical
ones) will be adequate in the current text, where proofs are viewed merely as a
vehicle for the verification of the validity of claims. (This attitude gets to an
extreme in the case of zero-knowledge proofs, where we actually require that the
proofs themselves be useless beyond being convincing of the validity of the claimed
assertion.)

In general, we will be interested in modeling various forms of proofs that may
occur in the world, focusing on proofs that can be verified by automated procedures.
These verification procedures are designed to check the validity of potential proofs,
and are oblivious to additional features that may appeal to humans such as beauty,

5



insightfulness, etc. In the current section we will consider the most general form
of proof systems that still allow efficient verification.

We note that the proof systems that we study refer to mundane theorems (e.g.,
asserting that a specific propositional formula is not satisfiable or that a party sent
a message as instructed by a predetermined protocol). We stress that the (meta)
theorems that we shall state regarding these proof systems will be proved in the
traditional mathematical sense.

1.1.2 Prover and Verifier

The wide interpretation of the notion of a proof system, which includes interactive
processes of verification, calls for the explicit introduction of two interactive players,
called the prover and the verifier. The verifier is the party that employs the
verification procedure, which underlies the definition of any proof system, while
the prover is the party that tries to convince the verifier. In the context of static
(or non-interactive) proofs, the prover is the transcendental entity providing the
proof, and thus in this context the prover is often not mentioned at all (when
discussing the verification of alleged proofs). Still, explicitly mentioning potential
provers may be beneficial even when discussing such static (non-interactive) proofs.

We highlight the “distrustful attitude” towards the prover, which underlies any
proof system. If the verifier trusts the prover then no proof is needed. Hence,
whenever discussing a proof system, one should envision a setting in which the
verifier is not trusting the prover, and furthermore is skeptical of anything that the
prover says. In such a setting the prover’s goal is to convince the verifier, while the
verifier should make sure that it is not fooled by the prover. (See further discussion
in Sec. 1.1.3.) Note that the verifier is “trusted” to protect its own interests by
employing the predetermined verification procedure; indeed, the asymmetry with
respect to who we trust is an artifact of our focus on the verification process (or
task). In general, each party is trusted to protect its own interests (i.e., the verifier
is trusted to protect its own interests), but no party is trusted to protect the
interests of the other party (i.e., the prover is not trusted to protect the verifier’s
interest of not being fooled by the prover).

Another asymmetry between the two parties is that our discussion focuses on
the complexity of the verification task and ignores (as a first approximation) the
complexity of the proving task (which is only discussed in Sec. 1.5.1). Note that this
asymmetry is reflected in the definition of NP-proof systems; that is, verification
is required to be efficient, whereas for sets NP \ P finding adequate proofs is
infeasible. Thus, as a first approximation, we consider the question of what can
be efficiently verified when interacting with an arbitrary prover (which may be
infinitely powerful). Once this question is resolved, we shall also consider the
complexity of the proving task (indeed, see Sec. 1.5.1).

1.1.3 Completeness and Soundness

Two fundamental properties of a proof system (i.e., of a verification procedure) are
its soundness (or validity) and completeness. The soundness property asserts that

6



the verification procedure cannot be “tricked” into accepting false statements. In
other words, soundness captures the verifier’s ability to protect itself from being
convinced of false statements (no matter what the prover does in order to fool
it). On the other hand, completeness captures the ability of some prover to con-
vince the verifier of true statements (belonging to some predetermined set of true
statements). Note that both properties are essential to the very notion of a proof
system.

We note that not every set of true statements has a “reasonable” proof system
in which each of these statements can be proved (while no false statement can be
“proved”). This fundamental phenomenon is given a precise meaning in results
such as Gödel’s Incompleteness Theorem and Turing’s theorem regarding the un-
decidability of the Halting Problem. In contrast, recall that NP is defined as the
class of sets having proof systems that support efficient deterministic verification
(of “written proofs”). This chapter is devoted to the study of a more liberal notion
of efficient verification procedures (allowing both randomization and interaction).

1.2 Definition

Loosely speaking, an interactive proof is a “game” between a computationally
bounded verifier and a computationally unbounded prover whose goal is to con-
vince the verifier of the validity of some assertion. Specifically, the verifier employs
a probabilistic polynomial-time strategy (whereas no computational restrictions
apply to the prover’s strategy). It is required that if the assertion holds then the
verifier always accepts (i.e., when interacting with an appropriate prover strategy).
On the other hand, if the assertion is false then the verifier must reject with prob-
ability at least 1

2 , no matter what strategy is employed by the prover. (The error
probability can be reduced by running such a proof system several times.)

We formalize the interaction between parties by referring to the strategies that
the parties employ.1 A strategy for a party is a function mapping the party’s view
of the interaction so far to a description of this party’s next move; that is, such a
strategy describes (or rather prescribes) the party’s next move (i.e., its next message
or its final decision) as a function of the common input (i.e., the aforementioned
assertion), the party’s internal coin tosses, and all messages it has received so
far. Note that this formulation presumes (implicitly) that each party records the
outcomes of its past coin tosses as well as all the messages it has received, and
determines its moves based on these. Thus, an interaction between two parties,
employing strategies A and B respectively, is determined by the common input,
denoted x, and the randomness of both parties, denoted rA and rB . Assuming that
A takes the first move (and B takes the last “interactive move”), the corresponding
(t-round) interaction transcript (on common input x and randomness rA and rB)
is α1, β1, ..., αt, βt, where αi = A(x, rA, β1, ..., βi−1) and βi = B(x, rB , α1, ..., αi).

1An alternative formulation refers to the interactive machines that capture the behavior of each
of the parties (see, e.g., [25, Sec. 4.2.1.1]). Such an interactive machine invokes the corresponding
strategy, while handling the communication with the other party and keeping a record of all
messages received so far.

7



The corresponding final decision of A is defined as A(x, rA, β1, ..., βt).
We say that a party employs a probabilistic polynomial-time strategy if its next

move can be computed in a number of steps that is polynomial in the length of the
common input. In particular, this means that, on common input x, the strategy
may only consider a polynomial in |x| many messages, which are each of poly(|x|)
length.2 Intuitively, if the other party exceeds an a priori (polynomial in |x|) upper
bound on the total length of the messages that it is allowed to send, then the
execution is suspended.

Definition 1.1 (Interactive Proof systems – IP):3 An interactive proof system for
a set S is a two-party game, between a verifier executing a probabilistic polynomial-
time strategy, denoted V , and a prover that executes a (computationally unbounded)
strategy, denoted P , satisfying the following two conditions:

• Completeness: For every x ∈ S, the verifier V always accepts after interacting
with the prover P on common input x.

• Soundness: For every x 6∈ S and every strategy P ∗, the verifier V rejects with
probability at least 1

2 after interacting with P ∗ on common input x.

We denote by IP the class of sets having interactive proof systems.

The error probability (in the soundness condition) can be reduced by successive
applications of the proof system. In particular, repeating the proving process for
k times, reduces the probability that the verifier is fooled (i.e., accepts a false
assertion) to 2−k, and we can afford doing so for any k = poly(|x|). Variants on
the basic definition are discussed in Section 1.4.

Note that NP-proof systems are obtained as a special case of interactive proof
systems by eliminating interaction and randomness (i.e., restricting the commu-
nication to be uni-directional (from the prover to the verifier) and restricting the
verifier to deterministic strategies). As we shall see next, interaction may be ben-
eficial only if the verifier is probabilistic.

The role of randomness. Randomness is essential to the power of interactive
proofs; that is, restricting the verifier to deterministic strategies yields a class of
interactive proof systems that has no advantage over the class of NP-proof systems.
The reason being that, in case the verifier is deterministic, the prover can predict
the verifier’s part of the interaction. Thus, the prover can just supply its own
sequence of answers to the verifier’s sequence of (predictable) questions, and the
verifier can just check that these answers are convincing. Actually, soundness error
(and not merely randomized verification) is essential to the power of interactive
proof systems (i.e., their ability to reach beyond NP-proofs).

2Needless to say, the number of internal coin tosses fed to a polynomial-time strategy must
also be bounded by a polynomial in the length of x.

3We follow the convention of specifying strategies for both the verifier and the prover. An
alternative presentation only specifies the verifier’s strategy, while rephrasing the completeness
condition as follows: There exists a prover strategy P such that, for every x ∈ S, the verifier V
always accepts after interacting with P on common input x.

8



Proposition 1.2 Suppose that S has an interactive proof system (P, V ) with no
soundness error; that is, for every x 6∈ S and every potential strategy P ∗, the verifier
V rejects with probability one after interacting with P ∗ on common input x. Then
S ∈ NP.

Reflection. The uselessness of interacting with a deterministic verifier suggests
a general moral by which there is no point to interact with a party whose moves
are easily predictable, because such moves can be determined without any inter-
action. This moral represents the prover’s point of view (regarding interaction
with deterministic verifiers). In contrast, even an infinitely powerful party (e.g., a
prover) may gain by interacting with an unpredictable party (e.g., a randomized
verifier), because this interaction may provide useful information (e.g., information
regarding the verifier’s questions, which in turn allows the prover to increase its
probability of answering convincingly). Furthermore, from the verifier’s point of
view it is beneficial to interact with the prover, because the latter is computation-
ally stronger4 (and thus its moves may not be easily predictable by the verifier
even in the case that they are predictable in an information theoretic sense).

1.3 The Power of Interactive Proofs

We have seen that randomness is essential to the power of interactive proof systems
in the sense that without randomness interactive proofs are not more powerful than
NP-proofs. Indeed, the power of interactive proof arises from the combination of
randomization and interaction. We first demonstrate this point by a simple proof
system for a specific coNP-set that is not known to have an NP-proof system, and
next prove the celebrated result IP = PSPACE , which provides stronger evidence
for the belief that interactive proofs are more powerful than NP-proofs.

1.3.1 A simple example

One day on Olympus, bright-eyed Athena claimed that Nectar poured
from the new silver-coated jars tastes less good than Nectar poured
from the older gold-decorated jars. Mighty Zeus, who was forced to
introduce the new jars by the practically minded Hera, was annoyed at
the claim. He ordered that Athena be served one hundred glasses of
Nectar, each poured at random either from an old jar or from a new one,
and that she tell the source of the drink in each glass. To everybody’s
surprise, wise Athena correctly identified the source of each serving,
to which the Father of the Gods responded “my child, you are either
right or extremely lucky.” Since all gods knew that being lucky was
not one of the attributes of Pallas-Athena, they all concluded that the
impeccable goddess was right in her claim.

4Or, just possesses secret information (regarding the common input).

9



The foregoing story illustrates the main idea underlying the interactive proof for
Graph Non-Isomorphism, presented in Construction 1.3. Informally, this interac-
tive proof system is designed for proving dissimilarity of two given objects (in the
foregoing story these are the two brands of Nectar, whereas in Construction 1.3
these are two non-isomorphic graphs). We note that, typically, proving similarity
between objects is easy, because one can present a mapping (of one object to the
other) that demonstrates this similarity. In contrast, proving dissimilarity seems
harder, because in general there seems to be no succinct proof of dissimilarity (e.g.,
clearly, showing that a particular mapping fails does not suffice, while enumerat-
ing all possible mappings (and showing that each fails) does not yield a succinct
proof). More generally, it is typically easy to prove the existence of an easily veri-
fiable structure in a given object by merely presenting this structure, but proving
the non-existence of such a structure seems hard. Formally, membership in an
NP-set is proved by presenting an NP-witness, but it is not clear how to prove
the non-existence of such a witness. Indeed, recall that the common belief is that
coNP 6= NP.

Two graphs, G1 =(V1, E1) and G2 =(V2, E2), are called isomorphic if there exists
a 1-1 and onto mapping, φ, from the vertex set V1 to the vertex set V2 such that
{u, v} ∈ E1 if and only if {φ(v), φ(u)} ∈ E2. This (“edge preserving”) mapping
φ, in case it exists, is called an isomorphism between the graphs. The following
protocol specifies a way of proving that two graphs are not isomorphic, while it is
not known whether such a statement can be proved via a non-interactive process
(i.e., via an NP-proof system).

Construction 1.3 (Interactive proof for Graph Non-Isomorphism):

• Common Input: A pair of graphs, G1 =(V1, E1) and G2 =(V2, E2).

• Verifier’s first step (V1): The verifier selects at random one of the two input
graphs, and sends to the prover a random isomorphic copy of this graph.
Namely, the verifier selects uniformly σ ∈ {1, 2}, and a random permutation
π from the set of permutations over the vertex set Vσ. The verifier constructs
a graph with vertex set Vσ and edge set

E
def= {{π(u), π(v)} : {u, v}∈Eσ}

and sends (Vσ, E) to the prover.

• Motivating Remark: If the input graphs are non-isomorphic, as the prover
claims, then the prover should be able to distinguish (not necessarily by an
efficient algorithm) isomorphic copies of one graph from isomorphic copies of
the other graph. However, if the input graphs are isomorphic, then a random
isomorphic copy of one graph is distributed identically to a random isomorphic
copy of the other graph.

• Prover’s step: Upon receiving a graph, G′ = (V ′, E′), from the verifier, the
prover finds a τ ∈ {1, 2} such that the graph G′ is isomorphic to the input
graph Gτ . (If both τ =1, 2 satisfy the condition then τ is selected arbitrarily.

10



In case no τ ∈ {1, 2} satisfies the condition, τ is set to 0). The prover sends
τ to the verifier.

• Verifier’s second step (V2): If the message, τ , received from the prover equals
σ (chosen in Step V1) then the verifier outputs 1 (i.e., accepts the common
input). Otherwise the verifier outputs 0 (i.e., rejects the common input).

The verifier’s strategy in Construction 1.3 is easily implemented in probabilistic
polynomial-time. We do not known of a probabilistic polynomial-time implemen-
tation of the prover’s strategy, but this is not required. The motivating remark
justifies the claim that Construction 1.3 constitutes an interactive proof system for
the set of pairs of non-isomorphic graphs. Recall that the latter set is not known
to be in NP.

1.3.2 The full power of interactive proofs

The interactive proof system of Construction 1.3 refers to a specific coNP-set that
is not known to be in NP. It turns out that interactive proof systems are powerful
enough to prove membership in any coNP-set (e.g., prove that a graph is not 3-
colorable). Thus, assuming that NP 6= coNP, this establishes that interactive
proof systems are more powerful than NP-proof systems. Furthermore, the class
of sets having interactive proof systems coincides with the class of sets that can be
decided using a polynomial amount of work-space.

Theorem 1.4 (The IP Theorem): IP = PSPACE.
Recall that it is widely believed that NP is a proper subset of PSPACE . Thus,
under this conjecture, interactive proofs are more powerful than NP-proofs.

Sketch of the Proof of Theorem 1.4

We first show that coNP ⊆ IP, by presenting an interactive proof system for
the coNP-complete set of unsatisfiable CNF formulae. Next we extend this proof
system to obtain one for the PSPACE-complete set of unsatisfiable Quantified
Boolean Formulae. Finally, we observe that IP ⊆ PSPACE .

We show that the set of unsatisfiable CNF formulae has an interactive proof
system by using algebraic methods, which are applied to an arithmetic generaliza-
tion of the said Boolean problem (rather than to the problem itself). That is, in
order to demonstrate that this Boolean problem has an interactive proof system, we
first introduce an arithmetic generalization of CNF formulae, and then construct
an interactive proof system for the resulting arithmetic assertion (by capitalizing
on the arithmetic formulation of the assertion). Intuitively, we present an iterative
process, which involves interaction between the prover and the verifier, such that in
each iteration the residual claim to be established becomes simpler (i.e., contains
one variable less). This iterative process seems to be enabled by the fact that the
various claims refer to the arithmetic problem rather than to the original Boolean
problem. (Actually, one may say that the key point is that these claims refer to a
generalized problem rather than to the original one.)

11



The starting point: We prove that coNP ⊆ IP by presenting an interactive
proof system for the set of unsatisfiable CNF formulae, which is coNP-complete.
Thus, our starting point is a given Boolean CNF formula, which is claimed to be
unsatisfiable.

Arithmetization of Boolean (CNF) formulae: Given a Boolean (CNF) for-
mula, we replace the Boolean variables by integer variables, and replace the logical
operations by corresponding arithmetic operations. In particular, the Boolean val-
ues false and true are replaced by the integer values 0 and 1 (respectively),
or-clauses are replaced by sums, and the top level conjunction is replaced by a
product. This translation is depicted in Figure 1.1. Note that the Boolean formula

Boolean arithmetic
variable values false, true 0, 1
connectives ¬x, ∨ and ∧ 1− x, + and ·
final values false, true 0, positive

Figure 1.1: Arithmetization of CNF formulae.

is satisfied (resp., unsatisfied) by a specific truth assignment if and only if evaluat-
ing the resulting arithmetic expression at the corresponding 0-1 assignment yields a
positive (integer) value (resp., yields the value zero). Thus, the claim that the orig-
inal Boolean formula is unsatisfiable translates to the claim that the summation of
the resulting arithmetic expression, over all 0-1 assignments to its variables, yields
the value zero. We highlight two additional observations regarding the resulting
arithmetic expression:

1. The arithmetic expression is a low degree polynomial over the integers; specif-
ically, its (total) degree equals the number of clauses in the original Boolean
formula.

2. For any Boolean formula, the value of the corresponding arithmetic expression
(for any choice of x1, ..., xn ∈ {0, 1}) resides within the interval [0, vm], where
v is the maximum number of variables in a clause, and m is the number of
clauses. Thus, summing over all 2n possible 0-1 assignments, where n ≤ vm
is the number of variables, yields an integer value in [0, 2nvm].

Moving to a Finite Field: In general, whenever we need to check equality
between two integers in [0,M ], it suffices to check their equality mod q, where
q > M . The benefit is that, if q is prime then the arithmetic is now in a finite
field (mod q), and so certain things are “nicer” (e.g., uniformly selecting a value).
Thus, proving that a CNF formula is not satisfiable reduces to proving an equality

12



of the following form
∑

x1=0,1

· · ·
∑

xn=0,1

φ(x1, ..., xn) ≡ 0 (mod q), (1.1)

where φ is a low-degree multi-variate polynomial (and q can be represented using
O(|φ|) bits). In the rest of this exposition, all arithmetic operations refer to the
finite field of q elements, denoted GF(q).

Overview of the actual protocol: stripping summations in iterations.
Given a formal expression as in Eq. (1.1), we strip off summations in iterations,
stripping a single summation at each iteration, and instantiate the corresponding
free variable as follows. At the beginning of each iteration the prover is supposed
to supply the univariate polynomial representing the residual expression as a func-
tion of the (single) currently stripped variable. (By Observation 1, this is a low
degree polynomial and so it has a short description.)5 The verifier checks that the
polynomial (say, p) is of low degree, and that it corresponds to the current value
(say, v) being claimed (i.e., it verifies that p(0) + p(1) ≡ v). Next, the verifier ran-
domly instantiates the currently free variable (i.e., it selects uniformly r ∈ GF(q)),
yielding a new value to be claimed for the resulting expression (i.e., the verifier
computes v ← p(r), and expects a proof that the residual expression equals v).
The verifier sends the uniformly chosen instantiation (i.e., r) to the prover, and the
parties proceed to the next iteration (which refers to the residual expression and
to the new value v). At the end of the last iteration, the verifier has a closed form
expression (i.e., an expression without formal summations), which can be easily
checked against the claimed value.

A single iteration (detailed): The ith iteration is aimed at proving a claim of
the form

∑
xi=0,1

· · ·
∑

xn=0,1

φ(r1, ..., ri−1, xi, xi+1, ..., xn) ≡ vi−1 (mod q), (1.2)

where v0 = 0, and r1, ..., ri−1 and vi−1 are as determined in previous iterations.
The ith iteration consists of two steps (messages): a prover step followed by a
verifier step. The prover is supposed to provide the verifier with the univariate
polynomial pi that satisfies

pi(z) def=
∑

xi+1=0,1

· · ·
∑

xn=0,1

φ(r1, ..., ri−1, z, xi+1, ..., xn) mod q . (1.3)

Note that, modulo q, the value pi(0)+pi(1) equals the l.h.s of Eq. (1.2). Denote by
p′i the actual polynomial sent by the prover (i.e., the honest prover sets p′i = pi).
Then, the verifier first checks if p′i(0) + p′i(1) ≡ vi−1 (mod q), and next uniformly

5We also use Observation 2, which implies that we may use a finite field with elements having
a description length that is polynomial in the length of the original Boolean formula (i.e., log2 q =
O(vm)).

13



selects ri ∈ GF(q) and sends it to the prover. Needless to say, the verifier will
reject if the first check is violated. The claim to be proved in the next iteration is

∑
xi+1=0,1

· · ·
∑

xn=0,1

φ(r1, ..., ri−1, ri, xi+1, ..., xn) ≡ vi (mod q), (1.4)

where vi
def= p′i(ri) mod q is computed by each party.

Completeness of the protocol: When the initial claim (i.e., Eq. (1.1)) holds,
the prover can supply the correct polynomials (as determined in Eq. (1.3)), and
this will lead the verifier to always accept.

Soundness of the protocol: It suffices to upper-bound the probability that, for
a particular iteration, the entry claim (i.e., Eq. (1.2)) is false while the ending claim
(i.e., Eq. (1.4)) is valid. Indeed, let us focus on the ith iteration, and let vi−1 and
pi be as in Eq. (1.2) and Eq. (1.3), respectively; that is, vi−1 is the (wrong) value
claimed at the beginning of the ith iteration and pi is the polynomial representing
the expression obtained when stripping the current variable (as in Eq. (1.3)). Let
p′i(·) be any potential answer by the prover. We may assume, without loss of
generality, that p′i(0) + p′i(1) ≡ vi−1 (mod q) and that p′i is of low degree (since
otherwise the verifier will definitely reject). Using our hypothesis (that the entry
claim of Eq. (1.2) is false), we know that pi(0) + pi(1) 6≡ vi−1 (mod q). Thus,
p′i and pi are different low-degree polynomials, and so they may agree on very few
points (if at all). Now, if the verifier’s instantiation (i.e., its choice of a random ri)
does not happen to be one of these few points (i.e., pi(ri) 6≡ p′i(ri) (mod q)), then
the ending claim (i.e., Eq. (1.4)) is false too (because the new value (i.e., vi) is set
to p′i(ri) mod q, while the residual expression evaluates to pi(ri)).

This establishes that the set of unsatisfiable CNF formulae has an interactive
proof system. Actually, a similar proof system can be used to prove that a given
formula has a given number of satisfying assignments; i.e., prove membership in
the (“counting”) set

{(φ, k) : |{τ : φ(τ) = 1}| = k} . (1.5)

Using adequate reductions, it follows that every problem in #P has an interactive
proof system (i.e., for every NP-relation R, the set {(x, k) : |{y : (x, y)∈R}| = k}
is in IP). Proving that PSPACE ⊆ IP requires a little more work, as outlined
next.

Obtaining interactive proofs for PSPACE (the basic idea). We present an
interactive proof for the set of satisfied Quantified Boolean Formulae (QBF), which
is complete for PSPACE . Recall that the number of quantifiers in such formulae
is unbounded (e.g., it may be polynomially related to the length of the input),
that there are both existential and universal quantifiers, and furthermore these
quantifiers may alternate. In the arithmetization of these formulae, we replace
existential quantifiers by summations and universal quantifiers by products. Two

14



difficulties arise when considering the application of the foregoing protocol to the re-
sulting arithmetic expression. Firstly, the (integral) value of the expression (which
may involve a big number of nested formal products) is only upper-bounded by a
double-exponential function (in the length of the input). Secondly, when stripping
a summation (or a product), the expression may be a polynomial of high degree
(due to nested formal products that may appear in the remaining expression). For
example, both phenomena occur in the following expression

∑
x=0,1

∏
y1=0,1

· · ·
∏

yn=0,1

(x + yn) ,

which equals
∑

x=0,1 x2n−1 · (1 + x)2
n−1

. The first difficulty is easy to resolve
by using the fact that if two integers in [0,M ] are different then they must be
different modulo most of the primes in the interval [3, poly(log M)]. Thus, we let
the verifier select a random prime q of length that is linear in the length of the
original formula, and the two parties consider the arithmetic expression reduced
modulo this q. The second difficulty is resolved by noting that PSPACE is actually
reducible to a special form of (non-canonical) QBF in which no variable appears both
to the left and to the right of more than one universal quantifier. It follows that
when arithmetizing and stripping summations (or products) from the resulting
arithmetic expression, the corresponding univariate polynomial is of low degree
(i.e., at most twice the length of the original formula, where the factor of two is
due to the single universal quantifier that has this variable quantified on its left
and appearing on its right).

IP is contained in PSPACE: We shall show that, for every interactive proof
system, there exists an optimal prover strategy that can be implemented in polynomial-
space, where an optimal prover strategy is one that maximizes the probability that
the prescribed verifier accepts the common input. It follows that IP ⊆ PSPACE ,
because (for every S ∈ IP) we can emulate, in polynomial space, all possible inter-
actions of the prescribed verifier with any fixed polynomial-space prover strategy
(e.g., an optimal one), and accept if and only if the majority of these interactions
accept.

Proposition 1.5 Let V be a probabilistic polynomial-time (verifier) strategy. Then,
there exists a polynomial-space computable (prover) strategy f that, for every x,
maximizes the probability that V accepts x. That is, for every P ∗ and every x it
holds that the probability that V accepts x after interacting with P ∗ is upper-bounded
by the probability that V accepts x after interacting with f .

Proof Idea: The strategy f can be defined recursively. Specifically, for each
partial transcript of the interaction with V , the next message of f is determined
such that the probability that V accepts the common input (when the subsequent
prover messages are determined by f) is maximized.

15



1.4 Variants and finer structure: an overview

In this section we consider several variants on the basic definition of interactive
proofs as well as finer complexity measures.

1.4.1 Arthur-Merlin games a.k.a public-coin proof systems

The verifier’s messages in a general interactive proof system are determined arbi-
trarily (but efficiently) based on the verifier’s view of the interaction so far (which
includes its internal coin tosses, which without loss of generality can take place at
the onset of the interaction). Thus, the verifier’s past coin tosses are not necessarily
revealed by the messages that it sends. In contrast, in public-coin proof systems
(a.k.a Arthur-Merlin proof systems), the verifier’s messages contain the outcome
of any coin that it tosses at the current round. Thus, these messages reveal the
randomness used towards generating them (i.e., this randomness becomes public).
Actually, without loss of generality, the verifier’s messages can be identical to the
outcome of the coins tossed at the current round (because any other string that the
verifier may compute based on these coin tosses is actually determined by them).

Note that the proof systems presented in the proof of Theorem 1.4 are of the
public-coin type, whereas this is not the case for the Graph Non-Isomorphism proof
system (of Construction 1.3). Thus, although not all natural proof systems are of
the public-coin type, by Theorem 1.4 every set having an interactive proof system
also has a public-coin interactive proof system. This means that, in the context of
interactive proof systems, asking random questions is as powerful as asking clever
questions. (A stronger statement appears at the end of Sec. 1.4.3.)

Indeed, public-coin proof systems are a syntactically restricted type of inter-
active proof systems. This restriction may make the design of such systems more
difficult, but potentially facilitates their analysis (and especially when the analy-
sis refers to a generic system). Another advantage of public-coin proof systems is
that the verifier’s actions (except for its final decision) are oblivious of the prover’s
messages. This property is used in the proof of Theorem 2.6.

1.4.2 Interactive proof systems with two-sided error

In Definition 1.1 error probability is allowed in the soundness condition but not in
the completeness condition. In such a case, we say that the proof system has perfect
completeness (or one-sided error probability). A more general definition allows an
error probability (upper-bounded by, say, 1/3) in both the completeness and the
soundness conditions. Note that sets having such generalized (two-sided error)
interactive proofs are also in PSPACE , and thus (by Theorem 1.4) allowing two-
sided error does not increase the power of interactive proofs. See further discussion
at the end of Sec. 1.4.3.

16



1.4.3 A hierarchy of interactive proof systems

Definition 1.1 only refers to the total computation time of the verifier, and thus
allows an arbitrary (polynomial) number of messages to be exchanged. A finer
definition refers to the number of messages being exchanged (also called the number
of rounds).6

Definition 1.6 (The round-complexity of interactive proofs):

• For an integer function m, the complexity class IP(m) consists of sets having
an interactive proof system in which, on common input x, at most m(|x|)
messages are exchanged between the parties.7

• For a set of integer functions, M , we let IP(M) def=
⋃

m∈M IP(m). Thus,
IP = IP(poly).

For example, interactive proof systems in which the verifier sends a single message
that is answered by a single message of the prover corresponds to IP(2). Clearly,
NP ⊆ IP(1), yet the inclusion may be strict because in IP(1) the verifier may toss
coins after receiving the prover’s single message. (Also note that IP(0) = coRP.)

Definition 1.6 gives rise to a natural hierarchy of interactive proof systems,
where different “levels” of this hierarchy correspond to different “growth rates” of
the round-complexity of these systems. The following results are known regarding
this hierarchy.

• A linear speed-up (see [6] and [33]): For every integer function, f , such that
f(n) ≥ 2 for all n, the class IP(O(f(·))) collapses to the class IP(f(·)). In
particular, IP(O(1)) collapses to IP(2).

• The class IP(2) contains sets that are not known to be in NP; e.g., Graph
Non-Isomorphism (see Construction 1.3). However, under plausible intractabil-
ity assumptions, IP(2) = NP (see [42]).

• If coNP ⊆ IP(2) then the Polynomial-Time Hierarchy collapses (see [15]).

It is conjectured that coNP is not contained in IP(2), and consequently that inter-
active proofs with an unbounded number of message exchanges are more powerful
than interactive proofs in which only a bounded (i.e., constant) number of messages
are exchanged.8

The class IP(1), also denoted MA, seems to be the “real” randomized (and yet
non-interactive) version of NP: Here the prover supplies a candidate (polynomial-
size) “proof”, and the verifier assesses its validity probabilistically (rather than
deterministically).

6An even finer structure emerges when considering also the total length of the messages sent
by the prover (see [31]).

7We count the total number of messages exchanged, regardless of the direction of communica-
tion. Note that, without loss of generality, the last message is sent by the prover, the penultimate
message is sent by the verifier, etc.

8Note that the linear speed-up cannot be applied for an unbounded number of times, because
each application may increase (e.g., square) the time-complexity of verification.

17



The IP-hierarchy (i.e., IP(·)) equals an analogous hierarchy, denoted AM(·),
that refers to public-coin (a.k.a Arthur-Merlin) interactive proofs. That is, for
every integer function f , it holds that AM(f) = IP(f). For f ≥ 1, it is also the
case that AM(2f) = AM(O(f)); actually, the aforementioned linear speed-up for
IP(·) is established by combining the following two results:

1. Emulating IP(·) by AM(·): IP(f) ⊆ AM(f + 3) [33].

2. Linear speed-up for AM(·): AM(2f + 1) ⊆ AM(f + 1) [6].

In particular, IP(O(1)) = AM(2), even ifAM(2) is restricted such that the verifier
tosses no coins after receiving the prover’s message. (Note that IP(1) = AM(1)
and IP(0) = AM(0) are trivial.) We comment that it is common to shorthand
AM(2) by AM, which is indeed inconsistent with the convention of using IP as
shorthand of IP(poly).

The fact that IP(O(f)) = IP(f) is proved by establishing an analogous result
for AM(·) demonstrates the advantage of the public-coin setting for the study
of interactive proofs. A similar phenomenon occurs when establishing that the
IP-hierarchy equals an analogous two-sided error hierarchy [23].

1.4.4 Something completely different

We stress that although we have relaxed the requirements from the verification
procedure (by allowing it to interact with the prover, toss coins, and risk some
(bounded) error probability), we did not restrict the soundness of its verdict by
assumptions concerning the potential prover(s). This should be contrasted with
other notions of proof systems, such as computationally-sound ones (see Sec. 1.5.2),
in which the soundness of the verifier’s verdict depends on assumptions concerning
the potential prover(s).

1.5 On computationally bounded provers: an overview

Recall that our definition of interactive proofs (i.e., Definition 1.1) makes no ref-
erence to the computational abilities of the potential prover. This fact has two
opposite consequences:

1. The completeness condition does not provide any upper bound on the com-
plexity of the corresponding proving strategy (which convinces the verifier to
accept valid assertions).

2. The soundness condition guarantees that, regardless of the computational
effort spend by a cheating prover, the verifier cannot be fooled to accept
invalid assertions (with probability exceeding the soundness error).

Note that providing an upper-bound on the complexity of the (prescribed) prover
strategy P of a specific interactive proof system (P, V ) only strengthens the claim
that (P, V ) is an interactive proof system for the corresponding set (of valid as-
sertions). We stress that the prescribed prover strategy is referred to only in the

18



completeness condition (and is irrelevant to the soundness condition). On the other
hand, relaxing the definition of interactive proofs such that soundness holds only
for a specific class of cheating prover strategies (rather than for all cheating prover
strategies) weakens the corresponding claim. In this advanced section we consider
both possibilities.

1.5.1 How powerful should the prover be?

Suppose that a set S is in IP. This means that there exists a verifier V that can
be convinced to accept any input in S but cannot be fooled to accept any input not
in S (except with small probability). One may ask how powerful should a prover
be such that it can convince the verifier V to accept any input in S. Note that
Proposition 1.5 asserts that an optimal prover strategy (for convincing any fixed
verifier V ) can be implemented in polynomial-space, and we cannot expect any
better for a generic set in PSPACE = IP . Still, we may seek better upper-bounds
on the complexity of some prover strategy that convinces a specific verifier, which
in turn corresponds to a specific set S. More interestingly, considering all possible
verifiers that give rise to interactive proof systems for S, we wish to upper-bound
the computational power that suffices for convincing any of these verifiers (to accept
any input in S).

We stress that, unlike the case of computationally-sound proof systems (see
Sec. 1.5.2), we do not restrict the power of the prover in the soundness condition,
but rather consider the minimum complexity of provers meeting the completeness
condition. Specifically, we are interested in relatively efficient provers that meet
the completeness condition. The term “relatively efficient prover” has been given
three different interpretations, which are briefly surveyed next.

1. A prover is considered relatively efficient if, when given an auxiliary input (in
addition to the common input in S), it works in (probabilistic) polynomial-
time. Specifically, in case S ∈ NP, the auxiliary input maybe an NP-proof
that the common input is in the set. Still, even in this case the interac-
tive proof need not consist of the prover sending the auxiliary input to the
verifier; for example, an alternative procedure may allow the prover to be
zero-knowledge (see Construction 2.4).

This interpretation is adequate and in fact crucial for applications in which
such an auxiliary input is available to the otherwise polynomial-time parties.
Typically, such auxiliary input is available in cryptographic applications in
which parties wish to prove in (zero-knowledge) that they have correctly con-
ducted some computation. In these cases, the NP-proof is just the transcript
of the computation by which the claimed result has been generated, and thus
the auxiliary input is available to the party that plays the role of the prover.

2. A prover is considered relatively efficient if it can be implemented by a prob-
abilistic polynomial-time oracle machine with oracle access to the set S itself.
Note that the prover in Construction 1.3 has this property.

19



This interpretation generalizes the notion of self-reducibility of NP-proof sys-
tems. Recall that by self-reducibility of an NP-set (or rather of the corre-
sponding NP-proof system) we mean that the search problem of finding an
NP-witness is polynomial-time reducible to deciding membership in the set.
Here we require that implementing the prover strategy (in the relevant in-
teractive proof) be polynomial-time reducible to deciding membership in the
set.

3. A prover is considered relatively efficient if it can be implemented by a prob-
abilistic machine that runs in time that is polynomial in the deterministic
complexity of the set. This interpretation relates the time-complexity of con-
vincing a “lazy person” (i.e., a verifier) to the time-complexity of determining
the truth (i.e., deciding membership in the set).

Hence, in contrast to the first interpretation, which is adequate in settings
where assertions are generated along with their NP-proofs, the current in-
terpretation is adequate in settings in which the prover is given only the
assertion and has to test its validity by itself (before trying to convince a lazy
verifier of this claim).

1.5.2 Computational Soundness

Relaxing the soundness condition such that it only refers to relatively efficient ways
of trying to fool the verifier (rather than to all possible ways) yields a fundamentally
different notion of a proof system. The verifier’s verdict in such a system is not
absolutely sound, but is rather sound provided that the potential cheating prover
does not exceed the presumed complexity limits. As in Sec. 1.5.1, the notion of
“relative efficiency” can be given different interpretations, the most popular one
being that the cheating prover strategy can be implemented by a (non-uniform)
family of polynomial-size circuits. The latter interpretation coincides with the first
interpretation used in Sec. 1.5.1 (i.e., a probabilistic polynomial-time strategy that
is given an auxiliary input (of polynomial length)). Specifically, in this case, the
soundness condition is replaced by the following computational soundness condition
that asserts that it is infeasible to fool the verifier into accepting false statements.
Formally:

For every prover strategy that is implementable by a family of polynomial-
size circuits {Cn}, and every sufficiently long x ∈ {0, 1}∗ \ S, the prob-
ability that V accepts x when interacting with C|x| is less than 1/2.

As in case of standard soundness, the computational-soundness error can be re-
duced by repetitions. We warn, however, that unlike in the case of standard sound-
ness (where both sequential and parallel repetitions will do), the computational-
soundness error cannot always be reduced by parallel repetitions (see [9, 45]).

It is common and natural to consider proof systems in which the prover strate-
gies considered both in the completeness and soundness conditions satisfy the same
notion of relative efficiency. Protocols that satisfy these conditions with respect

20



to the foregoing interpretation are called arguments. We mention that argument
systems may be more efficient (e.g., in terms of their communication complexity)
than interactive proof systems (see [39] versus [31]).

21



Chapter 2

Zero-Knowledge Proof
Systems

Standard mathematical proofs are believed to yield (extra) knowledge and not
merely establish the validity of the assertion being proved; that is, it is commonly
believed that (good) proofs provide a deeper understanding of the theorem being
proved. At the technical level, an NP-proof of membership in some set S ∈ NP \P
yields something (i.e., the NP-proof itself) that is hard to compute (even when
assuming that the input is in S). For example, a 3-coloring of a graph constitutes an
NP-proof that the graph is 3-colorable, but it yields information (i.e., the coloring)
that seems infeasible to compute (when given an arbitrary 3-colorable graph).

A natural question that arises is whether or not proving an assertion always
requires giving away some extra knowledge. The setting of interactive proof systems
enables a negative answer to this fundamental question: In contrast to NP-proofs,
which seem to yield a lot of knowledge, zero-knowledge (interactive) proofs yield no
knowledge at all; that is, zero-knowledge proofs are both convincing and yet yield
nothing beyond the validity of the assertion being proved. For example, a zero-
knowledge proof of 3-colorability does not yield any information about the graph
(e.g., partial information about a 3-coloring) that is infeasible to compute from
the graph itself. Thus, zero-knowledge proofs exhibit an extreme contrast between
being convincing (of the validity of an assertion) and teaching anything on top of
the validity of the assertion.

Needless to say, the notion of zero-knowledge proofs is fascinating (e.g., since
it differentiates proof-verification from learning). Still, the reader may wonder
whether such a phenomenon is desirable, because in many settings we do care
to learn as much as possible (rather than learn as little as possible). However,
in other settings (most notably in cryptography), we may actually wish to limit
the gain that other parties may obtain from a proof (and, in particular, limit
this gain to the minimal level of being convinced of the validity of the assertion).
Indeed, the applicability of zero-knowledge proofs in the domain of cryptography
is vast; they are typically used as a tool for forcing (potentially malicious) parties

22



to behave according to a predetermined protocol (without having them reveal their
own private inputs). The interested reader is referred to detailed treatments in [25,
26]. We also mention that, in addition to their direct applicability in cryptography,
zero-knowledge proofs serve as a good benchmark for the study of various questions
regarding cryptographic protocols.

2.1 Definitional Issues

Loosely speaking, zero-knowledge proofs are proofs that yield nothing beyond the
validity of the assertion; that is, a verifier obtaining such a proof only gains convic-
tion in the validity of the assertion. This is formulated by saying that anything that
can be feasibly obtained from a zero-knowledge proof is also feasibly computable
from the (valid) assertion itself. The latter formulation follows the simulation
paradigm, which is discussed next.

2.1.1 A wider perspective: the simulation paradigm

In defining zero-knowledge proofs, we view the verifier as a potential adversary
that tries to gain knowledge from the (prescribed) prover.1 We wish to state that
no (feasible) adversary strategy for the verifier can gain anything from the prover
(beyond conviction in the validity of the assertion). The question addressed here
is how to formulate the “no gain” requirement.

Let us consider the desired formulation from a wide perspective. A key ques-
tion regarding the modeling of security concerns is how to express the intuitive
requirement that an adversary “gains nothing substantial” by deviating from the
prescribed behavior of an honest user. The answer is that the adversary gains noth-
ing if whatever it can obtain by unrestricted adversarial behavior can be obtained
within essentially the same computational effort by a benign (or prescribed) behav-
ior. The definition of the “benign behavior” captures what we want to achieve
in terms of security, and is specific to the security concern to be addressed. For
example, in the context of zero-knowledge, a benign behavior is any computation
that is based (only) on the assertion itself (while assuming that the latter is valid).
Thus, a zero-knowledge proof is an interactive proof in which no feasible adversar-
ial verifier strategy can obtain from the interaction more than a “benign party”
(which believes the assertion) can obtain from the assertion itself.

The foregoing interpretation of “gaining nothing” means that any feasible ad-
versarial behavior can be “simulated” by a benign behavior (and thus there is no
gain in the former). This line of reasoning is called the simulation paradigm, and
is pivotal to many definitions in cryptography (e.g., it underlies the definitions of
security of encryption schemes and cryptographic protocols; see [26]).

1Recall that when defining a proof system (e.g., an interactive proof system), we view the
prover as a potential adversary that tries to fool the (prescribed) verifier (into accepting invalid
assertions).

23



2.1.2 The basic definitions

We turn back to the concrete task of defining zero-knowledge. Firstly, we com-
ment that zero-knowledge is a property of some prover strategies; actually, more
generally, zero-knowledge is a property of some strategies. Fixing any strategy
(e.g., a prescribed prover), we consider what can be gained (i.e., computed) by an
arbitrary feasible adversary (e.g., a verifier) that interacts with the aforementioned
fixed strategy on a common input taken from a predetermined set (in our case, the
set of valid assertions). This gain is compared against what can be computed by an
arbitrary feasible algorithm (called a simulator) that is only given the input itself.
The fixed strategy is zero-knowledge if the “computational power” of these two
(fundamentally different settings) is essentially equivalent. Details follow.

The formulation of the zero-knowledge condition refers to two types of probabil-
ity ensembles, where each ensemble associates a single probability distribution to
each relevant input (e.g., a valid assertion). Specifically, in the case of interactive
proofs, the first ensemble represents the output distribution of the verifier after
interacting with the specified prover strategy P (on some common input), where
the verifier is employing an arbitrary efficient strategy (not necessarily the specified
one). The second ensemble represents the output distribution of some probabilistic
polynomial-time algorithm (which is only given the corresponding input (and does
not interact with anyone)). The basic paradigm of zero-knowledge asserts that for
every ensemble of the first type there exist a “similar” ensemble of the second type.
The specific variants differ by the interpretation given to the notion of similarity.
The most strict interpretation, leading to perfect zero-knowledge, is that similarity
means equality.

Definition 2.1 (perfect zero-knowledge, over-simplified):2 A prover strategy, P ,
is said to be perfect zero-knowledge over a set S if for every probabilistic polynomial-
time verifier strategy, V ∗, there exists a probabilistic polynomial-time algorithm,
A∗, such that

(P, V ∗)(x) ≡ A∗(x) , for every x ∈ S

where (P, V ∗)(x) is a random variable representing the output of verifier V ∗ after
interacting with the prover P on common input x, and A∗(x) is a random variable
representing the output of algorithm A∗ on input x.

We comment that any set in coRP has a perfect zero-knowledge proof system in
which the prover keeps silence and the verifier decides by itself. The same holds
for BPP provided that we relax the definition of interactive proof system to allow
two-sided error. Needless to say, our focus is on non-trivial proof systems; that is,
proof systems for sets outside of BPP.

2In the actual definition one relaxes the requirement in one of the following two ways. The
first alternative is allowing A∗ to run for expected (rather than strict) polynomial-time. The
second alternative consists of allowing A∗ to have no output with probability at most 1/2 and
considering the value of its output conditioned on it having output at all. The latter alternative
implies the former, but the converse is not known to hold.

24



A somewhat more relaxed interpretation (of the notion of similarity), leading
to almost-perfect zero-knowledge (a.k.a statistical zero-knowledge), is that similar-
ity means statistical closeness (i.e., negligible difference between the ensembles).
The most liberal interpretation, leading to the standard usage of the term zero-
knowledge (and sometimes referred to as computational zero-knowledge), is that
similarity means computational indistinguishability (i.e., failure of any efficient pro-
cedure to tell the two ensembles apart). Combining the foregoing discussion with
the relevant definition of computational indistinguishability (cf. [27, Sec. C.3.1]),
we obtain the following definition.

Definition 2.2 (zero-knowledge, somewhat simplified): A prover strategy, P , is
said to be zero-knowledge over a set S if for every probabilistic polynomial-time
verifier strategy, V ∗, there exists a probabilistic polynomial-time simulator, A∗,
such that for every probabilistic polynomial-time distinguisher, D, it holds that

d(n) def= max
x∈S∩{0,1}n

{|Pr[D(x, (P, V ∗)(x))=1]− Pr[D(x,A∗(x))=1]|}

is a negligible function.3 We denote by ZK the class of sets having zero-knowledge
interactive proof systems.

Definition 2.2 is a simplified version of the actual definition (presented, e.g., in [25,
Sec. 4.3.3]). Specifically, in order to guarantee that zero-knowledge is preserved
under sequential composition it is necessary to slightly augment the definition (by
providing V ∗ and A∗ with the same value of an arbitrary (poly(|x|)-bit long) aux-
iliary input).

On the role of randomness and interaction. It can be shown that only sets
in BPP have zero-knowledge proofs in which the verifier is deterministic. The
same holds for deterministic provers, provided that we consider “auxiliary-input”
zero-knowledge. It can also be shown that only sets in BPP have zero-knowledge
proofs in which a single message is sent. Thus, both randomness and interaction
are essential to the non-triviality of zero-knowledge proof systems. (For further
details, see [25, Sec. 4.5.1].)

Advanced Comment: Knowledge Complexity. Zero-knowledge is the lowest
level of a knowledge-complexity hierarchy which quantifies the “knowledge revealed
in an interaction.” Specifically, the knowledge complexity of an interactive proof
system may be defined as the minimum number of oracle-queries required in order
to efficiently simulate an interaction with the prover (see [30]).

3That is, d vanishes faster that the reciprocal of any positive polynomial (i.e., for every positive

polynomial p and for sufficiently large n, it holds that d(n) < 1/p(n)). Needless to say, d(n)
def
= 0

if S ∩ {0, 1}n = ∅.

25



2.2 The Power of Zero-Knowledge

When faced with a definition as complex (and seemingly self-contradictory) as the
definition of zero-knowledge, one should indeed wonder whether the definition can
be met (in a non-trivial manner).4 It turns out that the existence of non-trivial
zero-knowledge proofs is related to the existence of intractable problems in NP.
In particular, we will show that if one-way functions exist then every NP-set has a
zero-knowledge proof system. (For the converse, see [25, Sec. 4.5.2] or [50].) But
first, we demonstrate the non-triviality of zero-knowledge by a presenting a simple
(perfect) zero-knowledge proof system for a specific NP-set that is not known to
be in BPP. In this case we make no intractability assumptions (yet, the result is
significant only if NP is not contained in BPP).

2.2.1 A simple example

Recall that the set of pairs of isomorphic graphs is not known to be in BPP,
and thus the straightforward NP-proof system (in which the prover just supplies
the isomorphism) may not be zero-knowledge. Furthermore, assuming that Graph
Isomorphism is not in BPP, this set has no zero-knowledge NP-proof system.
Still, as we shall shortly see, this set does have a zero-knowledge interactive proof
system.5

Construction 2.3 (zero-knowledge proof for Graph Isomorphism):

• Common Input: A pair of graphs, G1 =(V1, E1) and G2 =(V2, E2).

If the input graphs are indeed isomorphic, then we let φ denote an arbitrary
isomorphism between them; that is, φ is a 1-1 and onto mapping of the vertex
set V1 to the vertex set V2 such that {u, v} ∈ E1 if and only if {φ(v), φ(u)} ∈
E2.

• Prover’s first Step (P1): The prover selects a random isomorphic copy of
G2, and sends it to the verifier. Namely, the prover selects at random, with
uniform probability distribution, a permutation π from the set of permutations
over the vertex set V2, and constructs a graph with vertex set V2 and edge set

E
def= {{π(u), π(v)} : {u, v}∈E2} .

The prover sends (V2, E) to the verifier.

4Recall that any set in BPP has a trivial zero-knowledge (two-sided error) proof system in
which the verifier just determines membership by itself. Thus, the issue is the existence of zero-
knowledge proofs for sets outside BPP.

5We mention that Construction 1.3 is zero-knowledge in a restricted sense (i.e., w.r.t the honest
verifier), but is not known to be zero-knowledge (in the general sense). In particular, a cheating
verifier may abuse the prover in order to learn whether or not G1 is isomorphic to some third
graph (which may be either given to it as auxiliary input or generated by it based on the common
input).

26



• Motivating Remark: If the input graphs are isomorphic, as the prover claims,
then the graph sent in Step P1 is isomorphic to both input graphs. However,
if the input graphs are not isomorphic then no graph can be isomorphic to
both of them.

• Verifier’s first Step (V1): Upon receiving a graph, G′ = (V ′, E′), from the
prover, the verifier asks the prover to show an isomorphism between G′ and
one of the input graphs, chosen at random by the verifier. Namely, the verifier
uniformly selects σ ∈ {1, 2}, and sends it to the prover (who is supposed to
answer with an isomorphism between Gσ and G′).

• Prover’s second Step (P2): If the message, σ, received from the verifier equals
2 then the prover sends π to the verifier. Otherwise (i.e., σ 6= 2), the prover
sends π ◦ φ (i.e., the composition of π on φ, defined as π ◦ φ(v) def= π(φ(v)))
to the verifier.

(Indeed, the prover treats any σ 6= 2 as σ = 1. Thus, in the analysis we shall
assume, without loss of generality, that σ ∈ {1, 2} always holds.)

• Verifier’s second Step (V2): If the message, denoted ψ, received from the
prover is an isomorphism between Gσ and G′ then the verifier outputs 1,
otherwise it outputs 0.

The verifier strategy in Construction 2.3 is easily implemented in probabilistic
polynomial-time. If the prover is given an isomorphism between the input graphs as
auxiliary input, then also the prover’s program can be implemented in probabilistic
polynomial-time. The motivating remark justifies the claim that Construction 2.3
constitutes an interactive proof system for the set of pairs of isomorphic graphs.
Thus, we focus on establishing the zero-knowledge property.

We consider first the special case in which the verifier actually follows the
prescribed strategy (and selects σ at random, and in particular obliviously of the
graph G′ it receives). The view of this verifier can be easily simulated by selecting
σ and ψ at random, constructing G′ as a random isomorphic copy of Gσ (via
the isomorphism ψ), and outputting the triple (G′, σ, ψ). Indeed (even in this
case), the simulator behaves differently from the prescribed prover (which selects
G′ as a random isomorphic copy of G2, via the isomorphism π), but its output
distribution is identical to the verifier’s view in the real interaction. However,
the foregoing description assumes that the verifier follows the prescribed strategy,
while in general the verifier may (adversarially) select σ depending on the graph
G′. Thus, a slightly more complicated simulation (described next) is required.

A general clarification may be in place. Recall that we wish to simulate the
interaction of an arbitrary verifier strategy with the prescribed prover. Thus, this
simulator must depend on the corresponding verifier strategy, and indeed we shall
describe the simulator while referring to such a generic verifier strategy. Formally,
this means that the simulator’s program incorporates the program of the corre-
sponding verifier strategy. Actually, the following simulator uses the generic verifier
strategy as a subroutine.

27



Turning back to the specific protocol of Construction 2.3, the basic idea is that
simulator tries to guess σ and completes a simulation if its guess turns out to be
correct. Specifically, the simulator selects τ ∈ {1, 2} uniformly (hoping that the
verifier will later select σ = τ), and constructs G′ by randomly permuting Gτ (and
thus being able to present an isomorphism between Gτ and G′). Recall that the
simulator is analyzed only on yes-instances (i.e., the input graphs G1 and G2 are
isomorphic). The point is that if G1 and G2 are isomorphic, then the graph G′

does not yield any information regarding the simulator’s guess (i.e., τ).6 Thus,
the value σ selected by the adversarial verifier may depend on G′ but not on τ ,
which implies that Pr[σ = τ ] = 1/2. In other words, the simulator’s guess (i.e., τ)
is correct (i.e., equals σ) with probability 1/2. Now, if the guess is correct then the
simulator can produce an output that has the correct distribution, and otherwise
the entire process is repeated.

Digest: a few useful conventions. We highlight three conventions that were
either used (implicitly) in the foregoing analysis or can be used to simplify the
description of (this and/or) other zero-knowledge simulators.

1. Without loss of generality, we may assume that the cheating verifier strategy
is implemented by a deterministic polynomial-size circuit (or, equivalently,
by a deterministic polynomial-time algorithm with an auxiliary input).7

This is justified by fixing any outcome of the verifier’s coins, and observ-
ing that our (“uniform”) simulation of the various (residual) deterministic
strategies yields a simulation of the original probabilistic strategy.

2. Without loss of generality, it suffices to consider cheating verifiers that (only)
output their view of the interaction (i.e., the common input, their internal
coin tosses, and the messages that they have received). In other words, it
suffices to simulate the view that cheating verifiers have of the real interaction.

This is justified by noting that the final output of any verifier can be obtained
from its view of the interaction, where the complexity of the transformation
is upper-bounded by the complexity of the verifier’s strategy.

3. Without loss of generality, it suffices to construct a “weak simulator” that
produces output with some noticeable8 probability such that whenever an
output is produced it is distributed “correctly” (i.e., similarly to the distri-
bution occuring in real interactions with the prescribed prover).

This is justified by repeatedly invoking such a weak simulator (polynomially)
many times and using the first output produced by any of these invocations.
Note that by using an adequate number of invocations, we fail to produce

6Indeed, this observation is identical to the observation made in the analysis of the soundness
of Construction 1.3.

7This observation is not crucial, but it does simplify the analysis (by eliminating the need to
specify a sequence of coin tosses in each invocation of the verifier’s strategy).

8A probability is called noticeable if it is greater than the reciprocal of some positive polynomial
(in the relevant parameter).

28



an output with negligible probability. Furthermore, note that a simulator
that fails to produce output with negligible probability can be converted
to a simulator that always produces an output, while incurring a negligible
statistic deviation in the output distribution.

2.2.2 The full power of zero-knowledge proofs

The zero-knowledge proof system presented in Construction 2.3 refers to one spe-
cific NP-set that is not known to be in BPP. It turns out that, under reasonable
assumptions, zero-knowledge can be used to prove membership in any NP-set. In-
tuitively, it suffices to establish this fact for a single NP-complete set, and thus we
focus on presenting a zero-knowledge proof system for the set of 3-colorable graphs.
This proof system will be described while referring to “boxes” in which information
can be hidden and later revealed. Such boxes can be implemented using one-way
functions (see Theorem 2.5).

Construction 2.4 (Zero-knowledge proof of 3-colorability, abstract description):
The description refers to abstract non-transparent boxes that can be perfectly locked
and unlocked such that these boxes perfectly hide their contents while being locked.

• Common Input: A simple graph G=(V, E).

• Prover’s first step: Let ψ be a 3-coloring of G. The prover selects a random
permutation, π, over {1, 2, 3}, and sets φ(v) def= π(ψ(v)), for each v ∈ V .
Hence, the prover forms a random relabeling of the 3-coloring ψ. The prover
sends to the verifier a sequence of |V | locked and non-transparent boxes such
that the vth box contains the value φ(v).

• Verifier’s first step: The verifier uniformly selects an edge {u, v} ∈ E, and
sends it to the prover.

• Motivating Remark: The boxes are supposed to contain a 3-coloring of the
graph, and the verifier asks to inspect the colors of vertices u and v. Indeed,
for the zero-knowledge condition, it is crucial that the prover only responds
to pairs that correspond to edges of the graph.

• Prover’s second step: Upon receiving an edge {u, v} ∈ E, the prover sends to
the verifier the keys to boxes u and v.

For simplicity of the analysis, if the verifier sends {u, v} 6∈ E then the prover
behaves as if it has received a fixed (or random) edge in E, rather than sus-
pending the interaction, which would have been the natural thing to do.

• Verifier’s second step: The verifier unlocks and opens boxes u and v, and
accepts if and only if they contain two different elements in {1, 2, 3}.

29



The verifier strategy in Construction 2.4 is easily implemented in probabilistic
polynomial-time. The same holds with respect to the prover’s strategy, provided
that it is given a 3-coloring of G as auxiliary input. Clearly, if the input graph is
3-colorable then the verifier accepts with probability 1 when interacting with the
prescribed prover. On the other hand, if the input graph is not 3-colorable, then
any contents put in the boxes must be invalid with respect to at least one edge,
and consequently the verifier will reject with probability at least 1

|E| . Hence, the
foregoing protocol exhibits a noticeable gap in the accepting probabilities between
the case of 3-colorable graphs and the case of non-3-colorable graphs. To increase
the gap, the protocol may be repeated sufficiently many times (of course, using
independent coin tosses in each repetition).

So far we showed that Construction 2.4 constitutes (a weak form of) an in-
teractive proof system for Graph 3-Colorability. The point, however, is that the
prescribed prover strategy is zero-knowledge. This is easy to see in the abstract
setting of Construction 2.4, because all that the verifier sees in the real interac-
tion is a sequence of boxes and a random pair of different colors (which is easy to
simulate). Indeed, the simulation of the real interaction proceeds by presenting a
sequence of boxes and providing a random pair of different colors as the contents
of the two boxes indicated by the verifier. Note that the foregoing argument relies
on the fact that the boxes (indicated by the verifier) correspond to vertices that
are connected by an edge in the graph.

This simple demonstration of the zero-knowledge property is not possible in
the digital implementation (discussed next), because in that case the boxes are
not totally unaffected by their contents (but are rather affected, yet in an indistin-
guishable manner). Thus, the verifier’s selection of the inspected edge may depend
on the “outside appearance” of the various boxes, which in turn may depend (in
an indistinguishable manner) on the contents of these boxes. Consequently, we
cannot determine the boxes’ contents after a pair of boxes are selected, and so the
simple foregoing simulation is inapplicable. Instead, we simulate the interaction as
follows.

1. We first guess (at random) which pair of boxes (corresponding to an edge)
the verifier would ask to open, and place a random pair of distinct colors
in these boxes (and garbage in the rest).9 Then, we hand all boxes to the
verifier, who asks us to open a pair of boxes (corresponding to an edge).

2. If the verifier asks for the pair that we chose (i.e., our guess is successful),
then we can complete the simulation by opening these boxes. Otherwise, we
try again (i.e., repeat Step 1 with a new random guess and random colors).
The key observation is that if the boxes hide the contents in the sense that
a box’s contents is indistinguishable based on its outside appearance, then
our guess will succeed with probability approximately 1/|E|. Furthermore,

9An alternative (and more efficient) simulation consists of putting random independent colors
in the various boxes, hoping that the verifier asks for an edge that is properly colored. The latter
event occurs with probability (approximately) 2/3, provided that the boxes hide their contents
(almost) perfectly.

30



in this case, the simulated execution will be indistinguishable from the real
interaction.

Thus, it suffices to use boxes that hide their contents almost perfectly (rather than
being perfectly opaque). Such boxes can be implemented digitally.

Digital implementation (overview). We implement the abstract boxes (re-
ferred to in Construction 2.4) by using adequately defined commitment schemes.
Loosely speaking, such a scheme is a two-phase game between a sender and a re-
ceiver such that after the first phase the sender is “committed” to a value and yet,
at this stage, it is infeasible for the receiver to find out the committed value (i.e.,
the commitment is “hiding”). The committed value will be revealed to the receiver
in the second phase and it is guaranteed that the sender cannot reveal a value
other than the one committed (i.e., the commitment is “binding”). Such commit-
ment schemes can be implemented assuming the existence of one-way functions
(i.e., functions that are easy to evaluate but hard to invert even in the average-case
sense). For details see, e.g., [25, Sec. 4.4.1].

Zero-knowledge proofs for other NP-sets. Using the fact that 3-colorability
is NP-complete, one can derive (from Construction 2.4) zero-knowledge proof sys-
tems for any NP-set.10 Furthermore, these proof systems employ relatively efficient
prover strategies.

Theorem 2.5 (The ZK Theorem): Assuming the existence of (non-uniformly hard)
one-way functions, it holds that NP ⊆ ZK. Furthermore, every S ∈ NP has a
(computational) zero-knowledge interactive proof system in which the prescribed
prover strategy can be implemented in probabilistic polynomial-time, provided that
it is given as auxiliary-input an NP-witness for membership of the common input
in S.

The hypothesis of Theorem 2.5 (i.e., the existence of one-way functions) seems un-
avoidable, because the existence of zero-knowledge proofs for “hard on the average”
problems implies the existence of one-way functions (see [50]).

Theorem 2.5 has a dramatic effect on the design of cryptographic protocols (see,
e.g., [26]). In a different vein we mention that, under the same assumption, any
interactive proof can be transformed into a zero-knowledge one. (This transforma-
tion, however, does not necessarily preserve the complexity of the prover.)

Theorem 2.6 (The ultimate ZK Theorem): Assuming the existence of (non-uniformly
hard) one-way functions, it holds that IP = ZK.

Loosely speaking, Theorem 2.6 can be proved by recalling that IP = AM(poly)
and modifying any public-coin protocol as follows: the modified prover sends com-
mitments to its messages rather than the messages themselves, and once the orig-
inal interaction is completed it proves (in zero-knowledge) that the corresponding

10Actually, we should either rely on the fact that the standard Karp-reductions are invertible
in polynomial time or on the fact that the 3-colorability protocol is actually zero-knowledge with
respect to auxiliary inputs.

31



transcript would have been accepted by the original verifier. Indeed, the latter as-
sertion is of the “NP type”, and thus the zero-knowledge proof system guaranteed
in Theorem 2.5 can be invoked for proving it.

Reflection. The proof of Theorem 2.5 uses the fact that 3-colorability is NP-
complete in order to obtain a zero-knowledge proofs for any set inNP by using such
a protocol for 3-colorability (i.e., Construction 2.4). Thus, an NP-completeness
result is used here in a “positive” way; that is, in order to construct something
rather than in order to derive a (“negative”) hardness result.11

Perfect and Statistical Zero-Knowledge. The foregoing results, which refer
to computational zero-knowledge proof systems, should be contrasted with the
known results regarding the complexity of statistical zero-knowledge proof systems:
Statistical zero-knowledge proof systems exist only for sets in IP(2)∩coIP(2), and
thus are unlikely to exist for all NP-sets. On the other hand, the class Statistical
Zero-Knowledge is known to contain some seemingly hard problems, and turns
out to have interesting complexity theoretic properties (e.g., being closed under
complementation, and having very natural complete problems). The interested
reader is referred to [49].

2.3 Proofs of Knowledge – a parenthetical section12

Loosely speaking, “proofs of knowledge” are interactive proofs in which the prover
asserts “knowledge” of some object (e.g., a 3-coloring of a graph), and not merely
its existence (e.g., the existence of a 3-coloring of the graph, which in turn is equiv-
alent to the assertion that the graph is 3-colorable). Note that the entity asserting
knowledge is actually the prover’s strategy, which is an automated computing de-
vice, hereafter referred to as a machine. This raises the question of what do we
mean by saying that a machine knows something.

2.3.1 Abstract reflections

Any standard dictionary suggests several meanings for the verb to know, but these
are typically phrased with reference to the notion of awareness, a notion which is
certainly inapplicable in the context of machines. Instead, we should look for a
behavioristic interpretation of the verb to know. Indeed, it is reasonable to link
knowledge with the ability to do something (e.g., the ability to write down whatever
one knows). Hence, we may say that a machine knows a string α if it can output
the string α. But this seems as total non-sense too: a machine has a well defined

11Historically, the proof of Theorem 2.5 was probably the first positive application of NP-
completeness. Subsequent positive uses of completeness results have appeared in the context of
interactive proofs (see the proof of Theorem 1.4), probabilistically checkable proofs (see the proof
of Theorem 3.3), and the study of statistical zero-knowledge (cf. [49]).

12Technically speaking, this topic belongs to Chapter 1, but its more interesting demonstrations
refer to zero-knowledge proofs of knowledge – hence its current positioning.

32



output – either the output equals α or it does not, so what can be meant by saying
that a machine can do something?

Interestingly, a sound interpretation of the latter phrase does exist. Loosely
speaking, by saying that a machine can do something we mean that the machine
can be easily modified such that it (or rather its modified version) does whatever
is claimed. More precisely, this means that there exists an efficient machine that,
using the original machine as a black-box (or given its code as an input), outputs
whatever is claimed.

Technically speaking, using a machine as a black-box seems more appealing
when the said machine is interactive (i.e., implements an interactive strategy).
Indeed, this will be our focus here. Furthermore, conceptually speaking, whatever
a machine knows (or does not know) is its own business, whereas what can be
of interest and reference to the outside is whatever can be deduced about the
knowledge of a machine by interacting with it. Hence, we are interested in proofs
of knowledge (rather than in mere knowledge).

2.3.2 A concrete treatment

For sake of simplicity let us consider a concrete question: how can a machine prove
that it knows a 3-coloring of a graph? An obvious way is just sending the 3-coloring
to the verifier. Yet, we claim that applying the protocol in Construction 2.4 (i.e.,
the zero-knowledge proof system for 3-Colorability) is an alternative way of proving
knowledge of a 3-coloring of the graph.

The definition of a verifier of knowledge of 3-coloring refers to any possible
prover strategy and links the ability to “extract” a 3-coloring (of a given graph)
from such a prover to the probability that this prover convinces the verifier. That is,
the definition postulates the existence of an efficient universal way of “extracting” a
3-coloring of a given graph by using any prover strategy that convinces this verifier
to accept this graph with probability 1 (or, more generally, with some noticeable
probability). On the other hand, we should not expect this extractor to obtain
much from prover strategies that fail to convince the verifier (or, more generally,
convince it with negligible probability). A robust definition should allow a smooth
transition between these two extremes (and in particular between provers that
convince the verifier with noticeable probability and those that convince it with
negligible probability). Such a definition should also support the intuition by which
the following strategy of Alice is zero-knowledge: Alice sends Bob a 3-coloring of
a given graph provided that Bob has successfully convinced her that he knows this
coloring.13 We stress that the zero-knowledge property of Alice’s strategy should
hold regardless of the proof-of-knowledge system used for proving Bob’s knowledge
of a 3-coloring.

Loosely speaking, we say that a strategy, V , constitutes a verifier for knowledge
of 3-coloring if, for any prover strategy P , the complexity of extracting a 3-coloring

13For simplicity, the reader may consider graphs that have a unique 3-coloring (up-to a rela-
beling). In general, we refer here to instances that have unique solution which arise naturally in
some (cryptographic) applications.

33



of G when using P as a “black box”14 is inversely proportional to the probability
that V is convinced by P (to accept the graph G). Namely, the extraction of the
3-coloring is done by an oracle machine, called an extractor, that is given access to
the strategy P (i.e., the function specifying the message that P sends in response to
any sequence of messages it may receive). We require that the (expected) running
time of the extractor, on input G and oracle access to P , be inversely related (by
a factor polynomial in |G|) to the probability that P convinces V to accept G. In
particular, if P always convinces V to accept G, then the extractor runs in expected
polynomial-time. The same holds in case P convinces V to accept with noticeable
probability. On the other hand, if P never convinces V to accept, then nothing is
required of the extractor. We stress that the latter special cases do not suffice for
a satisfactory definition; see discussion in [25, Sec. 4.7.1].

Proofs of knowledge, and in particular zero-knowledge proofs of knowledge,
have many applications to the design of cryptographic schemes and cryptographic
protocols (see, e.g., [25, 26]). These are enabled by the following general result.

Theorem 2.7 (Theorem 2.5, revisited): Assuming the existence of (non-uniformly
hard) one-way functions, any NP-relation has a zero-knowledge proof of knowledge
(of a corresponding NP-witnesses). Furthermore, the prescribed prover strategy
can be implemented in probabilistic polynomial-time, provided it is given such an
NP-witness.

14Indeed, one may consider also non-black-box extractors.

34



Chapter 3

Probabilistically Checkable
Proof Systems

Probabilistically checkable proof systems can be viewed as standard (determinis-
tic) proof systems that are augmented with a probabilistic procedure capable of
evaluating the validity of the assertion by examining few locations in the alleged
proof. Actually, we focus on the latter probabilistic procedure, which in turn im-
plies the existence of a deterministic verification procedure (obtained by going over
all possible random choices of the probabilistic procedure and making the adequate
examinations).

Modeling such probabilistic verification procedures, which may examine few
locations in the alleged proof, requires providing these procedures with direct access
to the individual bits of the alleged proof (so that they need not scan the proof
bit-by-bit). Thus, the alleged proof is a string, as in the case of a traditional
proof system, but the (probabilistic) verification procedure is given direct access
to individual bits of this string (see Figure 3.1).

We are interested in probabilistic verification procedures that access only few
locations in the proof, and yet are able to make a meaningful probabilistic verdict
regarding the validity of the alleged proof. Specifically, the verification procedure
should accept any valid proof (with probability 1), but rejects with probability
at least 1/2 any alleged proof for a false assertion. Such probabilistic verification
procedures are called probabilistically checkable proof (PCP) systems.

The fact that one can (meaningfully) evaluate the correctness of proofs by
examining few locations in them is indeed amazing and somewhat counter-intuitive.
Needless to say, such proofs must be written in a somewhat non-standard format,
because standard proofs cannot be verified without reading them in full (since a flaw
may be due to a single improper inference). In contrast, proofs for a PCP system
tend to be very redundant; they consist of superfluously many pieces of information
(about the claimed assertion), but their correctness can be (meaningfully) evaluated
by checking the consistency of a randomly chosen collection of few related pieces.
We stress that by a “meaningful evaluation” we mean rejecting alleged proofs of

35



Figure 3.1: The PCP model – an illustration.

false assertions with constant probability (rather than with probability that is
inversely proportional to the length of the alleged proof).

The main complexity measure associated with PCPs is indeed their query com-
plexity. Another complexity measure of natural concern is the length of the proofs
being employed, which in turn is related to the randomness complexity of the
system. The randomness complexity of PCPs plays a key role in numerous appli-
cations (e.g., in composing PCP systems as well as when applying PCP systems to
derive inapproximability results), and thus we specify this parameter rather than
the proof length.

3.1 Definition

Loosely speaking, a probabilistically checkable proof system consists of a probabilis-
tic polynomial-time verifier having access to an oracle that represents an alleged
proof (in redundant form). Typically, the verifier accesses only few of the oracle
bits, and these bit positions are determined by the outcome of the verifier’s coin
tosses. As in the case of interactive proof systems, it is required that if the asser-
tion holds then the verifier always accepts (i.e., when given access to an adequate
oracle); whereas, if the assertion is false then the verifier must reject with proba-
bility at least 1

2 , no matter which oracle is used. The basic definition of the PCP
setting is given in Part (1) of the following definition. Yet, the complexity measures
introduced in Part (2) are of key importance for the subsequent discussions.

Definition 3.1 (Probabilistically Checkable Proofs – PCP):

1. A probabilistically checkable proof system (PCP) for a set S is a probabilistic
polynomial-time oracle machine, called verifier and denoted V , that satisfies
the following two conditions:

36



• Completeness: For every x ∈ S there exists an oracle πx such that, on
input x and access to oracle πx, machine V always accepts x.

• Soundness: For every x 6∈ S and every oracle π, on input x and access
to oracle π, machine V rejects x with probability at least 1

2 .

2. We say that a probabilistically checkable proof system has query complexity
q :N→N if, on any input of length n, the verifier makes at most q(n) oracle
queries.1 Similarly, the randomness complexity r :N→N upper-bounds the
number of coin tosses performed by the verifier on a generic n-bit long input.

For integer functions r and q, we denote by PCP(r, q) the class of sets having
probabilistically checkable proof systems of randomness complexity r and query
complexity q. For sets of integer functions, R and Q,

PCP(R, Q) def=
⋃

r∈R , q∈Q

PCP(r, q) .

The error probability (in the soundness condition) of PCP systems can be reduced
by successive applications of the proof system. In particular, repeating the process
for k times, reduces the probability that the verifier is fooled by a false assertion to
2−k, whereas all complexities increase by at most a factor of k. Thus, PCP systems
of non-trivial query-complexity (cf. Section 3.2) provide a trade-off between the
number of locations examined in the proof and the confidence in the validity of the
assertion.

We note that the oracle πx referred to in the completeness condition of a PCP
system constitutes a proof in the standard mathematical sense. Indeed any PCP
system yields a standard proof system (with respect to a verification procedure
that scans all possible outcomes of V ’s internal coin tosses and emulates all the
corresponding checks). Furthermore, the oracles in PCP systems of logarithmic
randomness-complexity constitute NP-proofs. However, the oracles of a PCP sys-
tem have the extra remarkable property of enabling a lazy verifier to toss coins,
take its chances and “assess” the validity of the proof without reading all of it
(but rather by reading a tiny portion of it). Potentially, this allows the verifier
to examine very few bits of an NP-proof and even utilize very long proofs (i.e., of
super-polynomial length).

Adaptive versus non-adaptive verifiers. Definition 3.1 allows the verifier to
be adaptive; that is, the verifier may determine its queries based on the answers
it has received to previous queries (in addition to their dependence on the in-
put and on the verifier’s internal coin tosses). In contrast, non-adaptive verifiers
determine all their queries based solely on their input and internal coin tosses.
Note that q adaptive (binary) queries can be emulated by

∑q
i=1 2i−1 < 2q non-

adaptive (binary) queries. We comment that most constructions of PCP systems
use non-adaptive verifiers, and in fact in many sources PCP systems are defined as
non-adaptive.

1As usual in complexity theory, the oracle answers are binary values (i.e., either 0 or 1).

37



Randomness versus proof length. Fixing a verifier V , we say that location i
(in the oracle) is relevant to input x if there exists a computation of V on input x
in which location i is queried (i.e., there exists ω and π such that, on input x, ran-
domness ω and access to the oracle π, the verifier queries location i). The effective
proof length of V is the smallest function ` :N→N such that for every input x there
are at most `(|x|) locations (in the oracle) that are relevant to x. We claim that the
effective proof length of any PCP system is closely related to its randomness (and
query) complexity. On one hand, if the PCP system has randomness-complexity
r and query-complexity q, then its effective proof length is upper-bounded by 2r+q,
whereas a bound of 2r · q holds for non-adaptive systems. Thus, PCP systems of
logarithmic randomness complexity have effective proof length that is polynomial,
and hence yield NP-proof systems. On the other hand, in some sense, the random-
ness complexity of a PCP system can be upper-bounded by the logarithm of the
(effective) length of the proofs employed (provided we allow non-uniform verifiers).

On the role of randomness. The PCP Theorem (i.e., NP ⊆ PCP(log, O(1)))
asserts that a meaningful probabilistic evaluation of proofs is possible based on
a constant number of examined bits. We note that, unless P = NP, such a
phenomena is impossible when requiring the verifier to be deterministic. In par-
ticular, note that PCP(0, O(1)) = P holds (as a special case of PCP(r, q) ⊆
Dtime(22rq+r · poly)).

3.2 The Power of Probabilistically Checkable Proofs

The celebrated PCP Theorem asserts that NP = PCP(log, O(1)), and this result
is indeed the focus of the current section. But before getting to it we make several
simple observations regarding the PCP Hierarchy.

We first note that PCP(poly, 0) equals coRP, whereas PCP(0, poly) equals
NP. It is easy to prove an upper bound on the non-deterministic time complexity
of sets in the PCP hierarchy:

Proposition 3.2 (upper-bounds on the power of PCPs): For every polynomially
bounded integer function r, it holds that PCP(r, poly) ⊆ Ntime(2r · poly). In
particular, PCP(log, poly) ⊆ NP.

The focus on PCP systems of logarithmic randomness complexity reflects an inter-
est in PCP systems that utilize proof oracles of polynomial length (see discussion
in Section 3.1). We stress that such PCP systems (i.e., PCP(log, q)) are NP-proof
systems with a (potentially amazing) extra property: the validity of the assertion
can be “probabilistically evaluated” by examining a (small) portion (i.e., q(n) bits)
of the proof. Thus, for any fixed polynomially bounded function q, a result of the
form

NP ⊆ PCP(log, q) (3.1)

is interesting (because it applies also to NP-sets having witnesses of length exceed-
ing q). Needless to say, the smaller q – the better. The PCP Theorem asserts the
amazing fact by which q can be made a constant.

38



Theorem 3.3 (The PCP Theorem): NP ⊆ PCP(log, O(1)).

Thus, probabilistically checkable proofs in which the verifier tosses only logarith-
mically many coins and makes only a constant number of queries exist for every
set in NP. This constant is essentially three (see Sec. 3.4.1). Before reviewing the
proof of Theorem 3.3, we make a couple of comments.

Efficient transformation of NP-witnesses to PCP oracles: The proof of
Theorem 3.3 is constructive in the sense that it allows to efficiently transform
any NP-witness (for an instance of a set in NP) into an oracle that makes the
PCP verifier accept (with probability 1). That is, for every NP-witness relation R
there exists a PCP verifier V as in Theorem 3.3 and a polynomial-time computable
function π such that for every (x, y)∈R the verifier V always accepts the input x
when given oracle access to the proof π(x, y) (i.e., Pr[V π(x,y)(x)=1] = 1). Recalling
that the latter oracles are themselves NP-proofs, it follows that NP-proofs can be
transformed into NP-proofs that offer a trade-off between the portion of the proof
being read and the confidence it offers. Specifically, for every ε > 0, if one is
willing to tolerate an error probability of ε then it suffices to examine O(log(1/ε))
bits of the (transformed) NP-proof. Indeed (as discussed in Section 3.1), these bit
locations need to be selected at random.

The foregoing strengthening of Theorem 3.3 offers a wider range of applications
than Theorem 3.3 itself. Indeed, Theorem 3.3 itself suffices for “negative” applica-
tions such as establishing the infeasibility of certain approximation problems (see
Section 3.3). But for “positive” applications (see Sec. 3.4.2), typically some user
(or a real entity) will be required to actually construct the PCP-oracle, and in such
cases the strengthening of Theorem 3.3 will be useful.

A characterization of NP: Combining Theorem 3.3 with Proposition 3.2 we
obtain the following characterization of NP.

Corollary 3.4 (The PCP characterization of NP): NP = PCP(log, O(1)).

Road-map for the proof of the PCP Theorem: Theorem 3.3 is a culmination
of a sequence of remarkable works, each establishing meaningful and increasingly
stronger versions of Eq. (3.1). A presentation of the full proof of Theorem 3.3 is
beyond the scope of the current text. Instead, we present an overview of the original
proof (see Sec. 3.2.2) as well as of an alternative proof (see Sec. 3.2.3), which was
found more than a decade later. We will start, however, by presenting a weaker
result that is used in both proofs of Theorem 3.3 and is also of independent interest.
This weaker result (see Sec. 3.2.1) asserts that every NP-set has a PCP system with
constant query-complexity (albeit with polynomial randomness complexity); that
is, NP ⊆ PCP(poly, O(1)).

3.2.1 Proving that NP ⊆ PCP(poly, O(1))

The fact that every NP-set has a PCP system with constant query-complexity
(regardless of its randomness-complexity) already testifies to the power of PCP

39



systems. It asserts that probabilistic verification of proofs is possible by inspecting
very few locations in a (potentially huge) proof. Indeed, the PCP systems presented
next utilize exponentially long proofs, but they do so while inspecting these proofs
at a constant number of (randomly selected) locations.

We start with a brief overview of the construction. We first note that it suffices
to construct a PCP for proving the satisfiability of a given system of quadratic
equations over GF(2), because this problem is NP-complete.2 For an input con-
sisting of a system of quadratic equations with n variables, the oracle (of this PCP)
is supposed to provide the evaluation of all quadratic expressions (in these n vari-
ables) at some fixed assignment to these variables. This assignment is supposed
to satisfy the system of quadratic equations that is given as input. We distinguish
two tables in the oracle: the first table corresponding to all 2n linear expressions
and the second table to all 2n2

quadratic expressions. Each table is tested for self-
consistency (via a “linearity test”), and the two tables are tested to be consistent
with each other (via a “matrix-equality” test, which utilizes “self-correction”). Fi-
nally, we test that the assignment encoded in these tables satisfies the quadratic
system that is given as input. This is done by taking a random linear combination
of the quadratic equations that appear in the quadratic system, and obtaining the
value assigned to the corresponding quadratic expression by the aforementioned
tables (again, via self-correction). The key point is that each of the foregoing tests
utilizes a constant number of Boolean queries, and has time (and randomness)
complexity that is polynomial in the size of the input. Details follow.

The starting point. We construct a PCP system for the set of satisfiable
quadratic equations over GF(2). The input is a sequence of such equations over the
variables x1, ..., xn, and the proof oracle consist of two parts (or tables), which are
supposed to provide information regarding some satisfying assignment τ = τ1 · · · τn

(also viewed as an n-ary vector over GF(2)). The first part, denoted T1, is sup-
posed to provide a Hadamard encoding of the said satisfying assignment; that is,
for every α ∈ GF(2)n this table is supposed to provide the inner product mod 2 of
the n-ary vectors α and τ (i.e., T1(α) is supposed to equal

∑n
i=1 αiτi). The second

part, denoted T2, is supposed to provide all linear combinations of the values of
the τiτj ’s; that is, for every β ∈ GF(2)n2

(viewed as an n-by-n matrix over GF(2)),
the value of T2(β) is supposed to equal

∑
i,j βi,jτiτj . (Indeed T1 is contained in

T2, because σ2 = σ for any σ ∈ GF(2).) The PCP verifier will use the two tables
for checking that the input (i.e., a sequence of quadratic equations) is satisfied by
the assignment that is encoded in the two tables. Needless to say, these tables may
not be a valid encoding of any n-ary vector (let alone one that satisfies the input),
and so the verifier also needs to check that the encoding is (close to being) valid.
We will focus on this task first.

Testing the Hadamard Code. Recall that T1 is supposed to encode a linear
function; that is, there must exist some τ = τ1 · · · τn ∈ GF(2)n such that T1(α) =∑n

i=1 τiαi holds for every α = α1 · · ·αn ∈ GF(2)n. This can be tested by selecting

2Here and elsewhere, we denote by GF(2) the 2-element field.

40



uniformly α′, α′′ ∈ GF(2)n and checking whether T1(α′) + T1(α′′) = T1(α′ + α′′),
where α′+ α′′ denotes addition of vectors over GF(2). The analysis of this natural
tester turns out to be quite complex. Nevertheless, it is indeed the case that any
table that is 0.02-far from being linear is rejected with probability at least 0.01,
where T is ε-far from being linear if T disagrees with any linear function f on more
than an ε fraction of the domain (i.e., Prr[T (r) 6=f(r)] > ε).

By repeating the linearity test for a constant number of times, we may reject
each table that is 0.02-far from being a codeword of the Hadamard Code with
probability at least 0.99. Thus, using a constant number of queries, the verifier
rejects any T1 that is 0.02-far from being a Hadamard encoding of any τ ∈ GF(2)n,
and likewise rejects any T2 that is 0.02-far from being a Hadamard encoding of
any τ ′ ∈ GF(2)n2

. We may thus assume that T1 (resp., T2) is 0.02-close to the
Hadamard encoding of some τ (resp., τ ′).3 (Needless to say, this does not mean
that τ ′ equals the outer product of τ with itself (i.e., τ ′i,j does not necessarily equal
τiτj).)

In the rest of the analysis, we fix τ ∈ GF(2)n and τ ′ ∈ GF(2)n2
, and denote the

Hadamard encoding of τ (resp., τ ′) by fτ :GF(2)n→GF(2) (resp., fτ ′ :GF(2)n2→
GF(2)). Recall that T1 (resp., T2) is 0.02-close to fτ (resp., fτ ′).

Self-correction of the Hadamard Code. Suppose that T is ε-close to a linear
function f : GF(2)m → GF(2) (i.e., Prr[T (r) 6= f(r)] ≤ ε). Then, we can recover
the value of f at any desired point x, by making two (random) queries to T .
Specifically, for a uniformly selected r ∈ GF(2)m, we use the value T (x+ r)−T (r).
Note that the probability that we recover the correct value is at least 1−2ε, because
Prr[T (x + r) − T (r) = f(x + r) − f(r)] ≥ 1 − 2ε and f(x + r) − f(r) = f(x) by
linearity of f . (Needless to say, for ε < 1/4, the function T cannot be ε-close to
two different linear functions.)4 Thus, assuming that T1 is 0.02-close to fτ (resp.,
T2 is 0.02-close to fτ ′) we may correctly recover (i.e., with error probability 0.04)
the value of fτ (resp., fτ ′) at any desired point by making 2 queries to T1 (resp.,
T2). This process is called self-correction.

Checking consistency of fτ and fτ ′ . Suppose that we are given access to
fτ : GF(2)n → GF(2) and fτ ′ : GF(2)n2 → GF(2), where fτ (α) =

∑
i τiαi

and fτ ′(α′) =
∑

i,j τ ′i,jα
′
i,j , and that we wish to verify that τ ′i,j = τiτj for ev-

ery i, j ∈ {1, ..., n}. In other words, we are given a (somewhat weird) encod-
ing of two matrices, A = (τiτj)i,j and A′ = (τ ′i,j)i,j , and we wish to check
whether or not these matrices are identical. It can be shown that if A 6= A′

then Prr,s[r>As 6= r>A′s] ≥ 1/4, where r and s are uniformly distributed n-ary
vectors. Note that, in our case (where A = (τiτj)i,j and A′ = (τ ′i,j)i,j), it holds that
r>As =

∑
j(

∑
i riτiτj)sj = fτ (r)fτ (s) and r>A′s =

∑
j(

∑
i riτ

′
i,j)sj = fτ ′(rs>),

3Note that τ (resp., τ ′) is uniquely determined by T1 (resp., T2), because every two different
linear functions GF(2)m → GF(2) agree on exactly half of the domain (i.e., the Hadamard code
has relative distance 1/2).

4Indeed, this fact follows from the self-correction argument, but a simpler proof merely refers
to the fact that the Hadamard code has relative distance 1/2.

41



where rs> is the outer-product of s and r. Thus, (for (τiτj)i,j 6= (τ ′i,j)i,j) we have
Prr,s[fτ (r)fτ (s) 6= fτ ′(rs>)] ≥ 1/4.

Recall, however, that we do not have direct access to the functions fτ and fτ ′ ,
but rather to tables (i.e., T1 and T2) that are 0.02-close to these functions. Still,
using self-correction, we can obtain the values of fτ and fτ ′ at any desired point,
with very high probability. Actually, when implementing the foregoing consistency
test it suffices to use self-correction for fτ ′ , because we use the values of fτ at
two independently and uniformly distributed points in GF(2)n (i.e., r, s) but the
value fτ ′ is required at rs>, which is not uniformly distributed in GF(2)n2

. Thus,
we test the consistency of fτ and fτ ′ by selecting uniformly r, s ∈ GF(2)n and
R ∈ GF(2)n2

, and checking that T1(r)T1(s) = T2(rs> + R)− T2(R).
By repeating the aforementioned (self-corrected) consistency test for a constant

number of times, we may reject an inconsistent pair of tables with probability at
least 0.99. Thus, in the rest of the analysis, we may assume that (τiτj)i,j = (τ ′i,j)i,j .

Checking that τ satisfies the quadratic system. Suppose that we are given
access to fτ and fτ ′ as in the foregoing (where, in particular, τ ′ = ττ>). A key
observation is that if τ does not satisfy a system of (quadratic) equations then,
with probability 1/2, it does not satisfy a random linear combination of these
equations. Thus, in order to check whether τ satisfies the quadratic system (which
is given as input), we create a single quadratic equation by taking such a random
linear combination, and check whether this quadratic equation is satisfied by τ .
The punch-line is that testing whether τ satisfies the quadratic equation Q(x) = σ
amounts to testing whether fτ ′(Q) = σ. Again, the actual checking is implemented
by using self-correction (of the table T2).

This completes the description of the verifier. Note that this verifier performs
a constant number of codeword tests for the Hadamard Code, and a constant
number of consistency and satisfiability tests, where each of the latter involves self-
correction of the Hadamard Code. Each of the individual tests utilizes a constant
number of queries (ranging between two and four) and uses randomness that is
quadratic in the number of variables (and linear in the number of equations in the
input). Thus, the query-complexity is a constant and the randomness-complexity
is at most quadratic in the length of the input (quadratic system). Clearly, if
the input quadratic system is satisfiable (by some τ), then the verifier accepts the
corresponding tables T1 and T2 (i.e., T1 = fτ and T2 = fττ>) with probability 1.
On the other hand, if the input quadratic system is unsatisfiable, then any pair of
tables (T1, T2) will be rejected with constant probability (by one of the foregoing
tests). It follows that NP ⊆ PCP(poly, O(1)).

3.2.2 Overview of the first proof of the PCP Theorem

The original proof of the PCP Theorem (Theorem 3.3) consists of three main
conceptual steps, which we briefly sketch first and further discuss later.

1. Constructing a (non-adaptive) PCP system for NP having logarithmic ran-
domness and polylogarithmic query complexity; that is, this PCP has the

42



desired randomness complexity and a very low (but non-constant) query com-
plexity. Furthermore, this proof system has additional properties that enable
proof composition as in the following Step 3.

2. Constructing a PCP system for NP having polynomial randomness and con-
stant query complexity; that is, this PCP has the desired (constant) query
complexity but its randomness complexity is prohibitively high. (Indeed, we
showed such a construction in Sec. 3.2.1.) Furthermore, this proof system
too has additional properties enabling proof composition as in Step 3.

3. The proof composition paradigm:5 In general, this paradigm allows to com-
pose two proof systems such that the “inner” verifier is used for probabilis-
tically verifying the acceptance criteria of the “outer” verifier. That is, the
combined verifier selects coins for the “outer” verifier, determines the corre-
sponding locations that the “outer” verifier wishes to inspect (in the proof),
and verifies that the “outer” verifier would have accepted the values that
reside in these locations. The latter verification is performed by invoking the
“inner” verifier, without reading the values residing in all the aforementioned
locations. Indeed, the aim is conducting this (“composed”) verification while
using much fewer queries than the query complexity of the “outer” proof sys-
tem. In particular, the inner verifier cannot afford to read its input, which
makes the composition more subtle than the term suggests.

Loosely speaking, the outer verifier should be robust in the sense that its
soundness condition guarantees that, with high probability, the oracle answers
are “far” from satisfying the residual decision predicate (rather than merely
not satisfy it). (Furthermore, the latter predicate, which is well-defined by the
non-adaptive nature of the outer verifier, must have a circuit of size bounded
by a polynomial in the number of queries.) The inner verifier is given oracle
access to its input and is charged for each query made to it, but is only
required to reject (with high probability) inputs that are far from being valid
(and, as usual, accept inputs that are valid). That is, the inner verifier is
actually a verifier of proximity.

Composing two such PCPs yields a new PCP for NP, where the new proof
oracle consists of the proof oracle of the “outer” system and a sequence of
proof oracles for the “inner” system (one “inner” proof per each possible
random-tape of the “outer” verifier). The resulting verifier selects coins for
the outer-verifier and uses the corresponding “inner” proof in order to verify
that the outer-verifier would have accepted under this choice of coins. Note
that such a choice of coins determines locations in the “outer” proof that the
outer-verifier would have inspected, and the combined verifier provides the
inner-verifier with oracle access to these locations (which the inner-verifier
considers as its input) as well as with oracle access to the corresponding
“inner” proof (which the inner-verifier considers as its proof-oracle). See
Figure 3.2 (and further details that follow the current sketch).

5Our presentation of the composition paradigm follows [12], rather than the original presen-
tation of [2, 1].

43



Figure 3.2: Composition of PCP system. The dashed arrows indicate
pointers from the (virtual) input and proof oracles of the inner-verifier to
the actual proof of the composed verifier. These pointers (as well as the
residual predicate) are determined by an invocation of the outer-verifier.

Note that composing an outer-verifier of randomness-complexity r′ and query-
complexity q′ with an inner-verifier of randomness-complexity r′′ and query-
complexity q′′ yields a PCP of randomness-complexity r(n) = r′(n)+r′′(q′(n))
and query-complexity q(n) = q′′(q′(n)), because q′(n) represents the length
of the input (oracle) that is accessed by the inner-verifier. Recall that the
outer-verifier is non-adaptive, and thus if the inner-verifier is non-adaptive
(resp., robust) then so is the verifier resulting from the composition, which is
important in case we wish to compose the latter verifier with another inner-
verifier.

In particular, the proof system of Step 1 is composed with itself [using r′(n) =
r′′(n) = O(log n) and q′(n) = q′′(n) = poly(log n)] yielding a PCP system (for
NP) of randomness-complexity r(n) = r′(n) + r′′(q′(n)) = O(log n) and query-
complexity q(n) = q′′(q′(n)) = poly(log log n). Composing the latter system (used
as an “outer” system) with the PCP system of Step 2, yields a PCP system (for
NP) of randomness-complexity r(n)+poly(q(n)) = O(log n) and query-complexity
O(1), thus establishing the PCP Theorem.

A more detailed overview

The foregoing description uses two (non-trivial) PCP systems and refers to addi-
tional properties such as robustness and verification of proximity. A PCP system of
polynomial randomness-complexity and constant query-complexity (as postulated

44



in Step 2) was already presented in Sec. 3.2.1. We thus start by discussing the
notions of verifying proximity and being robust, while demonstrating their appli-
cability to the said PCP. Next, we detail the composition of an “outer” robust-PCP
with an “inner” PCP-of-proximity. Finally, we outline the other PCP system that
is used (i.e., the one postulated in Step 1).

PCPs of Proximity. Recall that a standard PCP verifier gets an explicit input
and is given oracle access to an alleged proof (for membership of the input in a
predetermined set). In contrast, a PCP of proximity verifier is given (direct) access
to two oracles, one representing an input and the other being an alleged proof,
and its queries to both oracles are counted in its query-complexity. Typically, the
query-complexity of this verifier is lower than the length of the input oracle, and
hence this verifier cannot afford reading the entire input and cannot be expected
to make absolute statements about it. Indeed, instead of deciding whether or not
the input is in a predetermined set, the verifier is only required to distinguish the
case that the input is in the set from the case that the input is far from the set
(where far means being at relative Hamming distance at least 0.01 (or any other
small constant)).

For example, consider a variant of the system of Sec. 3.2.1 in which the quadratic
system is fixed6 and the verifier needs to determine whether the assignment ap-
pearing in the input oracle satisfies the said system or is far from any assignment
that satisfies it. We use a proof oracle as in Sec. 3.2.1, and a PCP verifier of prox-
imity that proceeds as in Sec. 3.2.1 and in addition perform a proximity test to
verify that the input oracle is close to the assignment encoded in the proof oracle.
Specifically, the verifier reads a uniformly selected bit of the input oracle and com-
pares this value to the self-corrected value obtained from the proof oracle (i.e., for
a uniformly selected i ∈ {1, ..., n}, we compare the ith bit of the input oracle to the
self-correction of the value T1(0i−110n−i), obtained from the proof oracle).

Robust PCPs. Composing an “outer” PCP verifier with an “inner” PCP veri-
fier of proximity makes sense provided that the outer verifier rejects in a “robust”
manner. Hence, the soundness condition of a robust verifier requires that (with
probability at least 1/2) the oracle answers are far from any sequence that is
acceptable by the residual predicate (rather than merely that the answers are re-
jected by this predicate). That is, for every no-instance x and every alleged proof
π = π1π2 · · ·π` ∈ {0, 1}`, it is required that, with probability at least 1/2 over the
verifier’s choice of coins ω ∈ {0, 1}r, it holds that πiω,1πiω,2 · · ·πiω,q is far from any
assignment that satisfies Pω, where iω,j is the jth query made (non-adaptively)
on coins ω, and Pω is the residual predicate that determines which sequences of
answers are accepted in this case. Indeed, if the outer verifier is robust, then it
suffices to distinguish answers that are valid from answers that are far from being
valid.

6Indeed, in our applications the quadratic system will be “known” to the (“inner”) verifier,
because it is determined by the (“outer”) verifier.

45



For example, if robustness is defined as referring to relative constant distance
(which is indeed the case), then the PCP of Sec. 3.2.1 (as well as any PCP of
constant query complexity) is trivially robust. However, we will not care about the
robustness of this PCP, because we only use this PCP as an inner verifier in proof
composition. In contrast, we will care about the robustness of PCPs that are used
as outer verifiers (e.g., the PCP postulated in Step 1 and outlined shortly).

A closer look at proof composition. Following the foregoing sketch, we fur-
ther detail the proof composition operation that is employed in the current sub-
section (i.e., Sec. 3.2.2). We start by detailing the two PCPs being composed. Let
V1 be a robust verifier of randomness-complexity r1 and query-complexity q1, and
suppose that its residual decision on input x and random-tape ω ∈ {0, 1}r1(|x|)

can be described by a poly(q1(|x|))-size circuit, denoted Cω. That is, on input x,
access to an oracle π = π1π2 · · ·π`, and random-tape ω ∈ {0, 1}r1(|x|), the veri-
fier V1 accepts if and only if Cω(πiω,1πiω,2 · · ·πiω,q1(|x|)) = 1, where iω,j is the jth

query made (non-adaptively) on input x and random-tape ω. Note that member-
ship in C−1

ω (1) can be determined in time poly(|Cω|) = poly(q1(|x|)). Let V2 be
a verifier of proximity for membership in C−1

ω (1), and suppose that its proximity
parameter equals (or is smaller than) the robustness parameter of V1. Actually,
the verifier V2 should either depend on the circuit Cω or get the description of Cω

as auxiliary input.7 Turning to the combined verifier resulting from the compo-
sition, we first postulate that, on input x, this verifier utilizes proofs of the form
(π, (π(ω))ω∈{0,1}r1(|x|)), where π is a proof for V1 (regarding the input x) and π(ω) is
a proof for V2 (regarding membership of the string πiω,1πiω,2 · · ·πiω,q1(|x|) in the set
C−1

ω (1)). The combined verifier uniformly selects a random-tape ω ∈ {0, 1}r1(|x|)

(for V1), determines the locations iω,1, iω,2, ..., iω,q1(|x|) (which V1 would query on
input x and random-tape ω), and invokes V2 while providing it with access to the
input-oracle πiω,1πiω,2 · · ·πiω,q1(|x|) and the proof-oracle π(ω). That is, if V2 queries
the jth bit of its input (resp., its proof) then the combined verifier queries the ithω,j

bit of π (resp., the jth bit of π(ω)) and provides V2 with the bit retrieved.
Clearly, if x is a yes-instance then using the adequate proofs π and (π(ω))ω∈{0,1}r1(|x|)

makes the combined verifier accept with probability 1. On the other hand, if x is
a no-instance then V1 will “robustly reject” any π with probability at least 1/2
(i.e., with probability at least 1/2 over the choice of ω ∈ {0, 1}r1(|x|), it holds that
πiω,1πiω,2 · · ·πiω,q1(|x|) is far from any string in the set C−1

ω (1)). Now, if V1 “robustly
rejects” π when using the random-tape ω ∈ {0, 1}r1(|x|), then (for any π(ω)) the
corresponding executions of V2 will reject with probability at least 1/2. It follows

7In the former case, V2 is a circuit (with oracle access to its input and proof oracles), which
incorporates the circuit Cω . In the latter case, the formulation of PCP of proximity should be
extended so to account for inputs that are given in two parts such that the first part (e.g., Cω)
is given explicitly (as an ordinary input) and the second part (e.g., the input to Cω) is given
implicitly via oracle access. Either way, it is essential that the size of Cω is polynomial in the
length of its own input (i.e., |Cω | = poly(q1(|x|))). In fact, an asymptotic treatment is facilitated
by using the latter formulation (of two-part inputs). In this case, V2 is actually an (extended)
PCP of proximity for statements in P ⊆ NP, where the valid statements have the form (C, α)
such that C(α) = 1 (where C is presented as explicit input and α is presented as implicit input).

46



that, for any choice of its proof oracle (i.e., any π and (π(ω))ω∈{0,1}r1(|x|)), the com-
bined verifier rejects each no-instance with probability at least 1/4. Needless to
say, the rejection probability can be increased by sequential repetitions.

PCP of logarithmic randomness and polylogarithmic query complexity
for NP. We focus on showing that NP ⊆ PCP(f, f), for f(n) = poly(log n),
and the claimed result will follow by a relatively minor modification (discussed
afterwards). The proof system underlying NP ⊆ PCP(f, f) is based on an arith-
metization of 3CNF formulae, which is different from the one used in Sec. 1.3.2
(for constructing an interactive proof system for coNP). We start by describing
this arithmetization, and later outline the PCP system that is based on it.

In the current arithmetization, the names of the variables (resp., clauses) of a
3CNF formula φ are represented by binary strings of logarithmic (in |φ|) length, and
a generic variable (resp., clause) of φ is represented by a logarithmic number of new
variables, which are assigned values in a finite field F ⊃ {0, 1}. Indeed, throughout
the rest of the description, we refer to the arithmetic operations of this finite field
F (which will have cardinality poly(|φ|)). The (structure of the) 3CNF formula
φ(x1, ..., xn) is represented by a Boolean function Cφ : {0, 1}O(log n) → {0, 1} such
that Cφ(α, β1, β2, β3) = 1 if and only if, for i = 1, 2, 3, the ith literal in the αth

clause of φ has index βi = (γi, σi), which is viewed as a variable name augmented by
its sign. Thus, for every α ∈ {0, 1}log |φ| there is a unique (β1, β2, β3) ∈ {0, 1}3 log 2n

such that Cφ(α, β1, β2, β3) = 1 holds. Next, we consider a multi-linear extension
of Cφ over F, denoted Φ; that is, Φ is the (unique) multi-linear polynomial that
agrees with Cφ on {0, 1}O(log n) ⊂ FO(log n).

Turning to the PCP, we first note that the verifier can reduce the original 3SAT-
instance φ to the aforementioned arithmetic instance Φ; that is, on input a 3CNF
formula φ, the verifier first constructs Cφ and Φ. Part of the proof oracle for this
verifier is viewed as function A : Flog n → F, which is supposed to be a multi-linear
extension of a truth assignment that satisfies φ (i.e., for every γ ∈ {0, 1}log n ≡ [n],
the value A(γ) is supposed to be the value of the γth variable in such an assignment).
Thus, we wish to check whether, for every α ∈ {0, 1}log |φ|, it holds that

∑

β1β2β3∈{0,1}3 log 2n

Φ(α, β1, β2, β3) ·
3∏

i=1

(1−A′(βi)) = 0 (3.2)

where A′(β) is the value of the βth literal under the (variable) assignment A;
that is, for β = (γ, σ), where γ ∈ {0, 1}log n is a variable name and σ ∈ {0, 1}
indicates the literal’s type (i.e., whether the variable is negated), it holds that
A′(β) = (1− σ) ·A(γ) + σ · (1−A(γ)). Thus, Eq. (3.2) holds if and only if the αth

clause is satisfied by the assignment induced by A (because A′(β) = 1 must hold
for at least one of the three literals β that appear in this clause).

As in Sec. 3.2.1, we cannot afford to verify all |φ| instances of Eq. (3.2). Further-
more, unlike in Sec. 3.2.1, we cannot afford to take a random linear combination
of these |φ| instances either (because this requires too much randomness). For-
tunately, taking a “pseudorandom” linear combination of these equations is good

47



enough. Specifically, using an adequate (efficiently constructible) small-bias proba-
bility space will do.8 Denoting such a space (of size poly(|φ| · |F |) and bias at most
1/6) by S ⊂ F|φ|, we may select uniformly (s1, ..., s|φ|) ∈ S and check whether

∑

αβ1β2β3∈{0,1}`

sα · Φ(α, β1, β2, β3) ·
3∏

i=1

(1−A′(βi)) = 0 (3.3)

where `
def= log |φ|+ 3 log 2n. The small-bias property guarantees that if A fails to

satisfy any of the equations of type Eq. (3.2) then, with probability at least 1/3
(taken over the choice of (s1, ..., s|φ|) ∈ S), it is the case that A fails to satisfy
Eq. (3.3). Since |S| = poly(|φ| · |F |) rather that |S| = 2|φ|, we can select a sample
in S using O(log |φ|) coin tosses. Thus, we have reduced the original problem to
checking whether, for a random (s1, ..., s|φ|) ∈ S, Eq. (3.3) holds.

Assuming (for a moment) that A is a low-degree polynomial, we can probabilis-
tically verify Eq. (3.3) by applying a “summation test” (as in the interactive proof
for coNP); that is, we refer to stripping the ` binary summations in iterations,
where in each iteration the verifier obtains a corresponding univariate polynomial
and instantiates it at a random point. Indeed, the verifier obtains the relevant uni-
variate polynomials by making adequate queries (which specify the entire sequence
of choices made so far in the summation test).9 Note that after stripping the `
summations, the verifier end-ups with an expression that contains three unknown
values of A′, which it may obtain by making corresponding queries to A. The sum-
mation test involves tossing ` · log |F| coins and making (` + 3) ·O(log |F|) Boolean
queries (which correspond to ` queries that are each answered by a univariate poly-
nomial of constant degree (over F), and three queries to A (each answered by an
element of F)). Soundness of the summation test follows by setting |F | À O(`),
where ` = O(log |φ|).

Recall, however, that we may not assume that A is a multi-variate polynomial of
low degree. Instead, we must check that A is indeed a multi-variate polynomial of
low degree (or rather that it is close to such a polynomial), and use self-correction
for retrieving the values of A (which are needed for the foregoing summation test).
Fortunately, a “low-degree test” of complexities similar to those of the summation
test does exist (and self-correction is also possible within these complexities). Thus,
using a finite field F of poly(log(n)) elements, the foregoing yields NP ⊆ PCP(f, f)
for f(n) def= O(log(n) · log log(n)).

To obtain the desired PCP system of logarithmic randomness complexity, we
represent the names of the original variables and clauses by O(log n)

log log n -long sequences
over {1, ..., log n}, rather than by logarithmically-long binary sequences. This re-
quires using low degree polynomial extensions (i.e., polynomial of degree (log n)−1),

8Here we refer to a probability space over F|φ| that cannot be distinguished from the uniform
distribution by any linear test; that is, the bias of the distribution (ζ1, ..., ζ|φ|) with respect to the

linear test (t1, ..., t|φ|) 6= 0|φ| is defined as the absolute value of E[ωΣi∈[|φ|]tiζi ], where ω denotes

the |F|th complex root of unity. For further details, see [27, §8.5.2.3].
9The query will also contain a sequence (s1, ..., s|φ|) ∈ S, selected at random (by the verifier)

and fixed for the rest of the process.

48



rather than multi-linear extensions. We can still use a finite field of poly(log(n))
elements, and so we need only O(log n)

log log n ·O(log log n) random bits for the summation
and low-degree tests. However, the number of queries (needed for obtaining the
answers in these tests) grows, because now the polynomials that are involved have
individual degree O(log n) rather than constant individual degree. This merely
means that the query-complexity increases by a factor of log n

log log n (since the indi-
vidual degree increases by a factor of log n but the number of variables decreases
by a factor of log log n). Thus, we obtain NP ⊆ PCP(log, q) for q(n) def= O(log2 n).

Warning: Robustness and PCP of proximity. Recall that, in order to use
the latter PCP system in composition, we need to guarantee that it (or a version
of it) is robust as well as to present a version that is a PCP of proximity. The
latter version is relatively easy to obtain (using ideas as applied to the PCP of
Sec. 3.2.1), whereas obtaining robustness is too complex to be described here.
We comment that one way of obtaining a robust PCP system is by a generic
application of a (randomness-efficient) “parallelization” of PCP systems (cf. [1]),
which in turn depends heavily on highly efficient low-degree tests. An alternative
approach (cf. [12]) capitalizes on the specific structure of the summation test (as
well as on the evident robustness of a simple low-degree test).

Reflection. The PCP Theorem asserts a PCP system that obtains simultane-
ously the minimal possible randomness and query complexity (up to a multiplica-
tive factor, assuming that P 6= NP). The foregoing construction obtains this
remarkable result by combining two different PCPs: the first PCP obtains loga-
rithmic randomness but uses poly-logarithmically many queries, whereas the second
PCP uses a constant number of queries but has polynomial randomness complex-
ity. We stress that each of these two PCP systems is highly non-trivial and very
interesting by itself. We also highlight the fact that these PCPs are combined us-
ing a very simple composition method (which refers to auxiliary properties such as
robustness and proximity testing).10

3.2.3 Overview of the second proof of the PCP Theorem

The original proof of the PCP Theorem focuses on the construction of two PCP
systems that are highly non-trivial and interesting by themselves, and combines
them in a natural manner. Loosely speaking, this combination (via proof compo-
sition) preserves the good features of each of the two systems; that is, it yields a
PCP system that inherits the (logarithmic) randomness complexity of one system
and the (constant) query complexity of the other. In contrast, the following alter-
native proof is focused on the “amplification” of (the quality of) PCP systems, via
a gradual process of logarithmically many steps. We start with a trivial “PCP”

10Advanced comment: We comment that the composition of PCP systems that lack these
extra properties is possible, but is far more cumbersome and complex. In some sense, this alterna-
tive composition involves transforming the given PCP systems to ones having properties related
to robustness and proximity testing.

49



system that has the desired complexities but rejects false assertions with probabil-
ity inversely proportional to their length, and in each step we double the rejection
probability while essentially maintaining the initial complexities. That is, in each
step, the constant query complexity of the verifier is preserved and its random-
ness complexity is increased only by a constant term. Thus, the process gradually
transforms an extremely weak PCP system into a remarkably strong PCP system
(i.e., a PCP as postulated in the PCP Theorem).

In order to describe the aforementioned process we need to redefine PCP sys-
tems so to allow arbitrary soundness error. In fact, for technical reasons, it is more
convenient to describe the process as an iterated reduction of a “constraint satisfac-
tion” problem to itself. Specifically, we refer to systems of 2-variable constraints,
which are readily represented by (labeled) graphs such that the vertices correspond
to (non-Boolean) variables and the edges are associated with constraints.

Definition 3.5 (CSP with 2-variable constraints): For a fixed finite set Σ, an
instance of CSP consists of a graph G = (V, E) (which may have parallel edges
and self-loops) and a sequence of 2-variable constraints Φ = (φe)e∈E associated
with the edges, where each constraint has the form φe : Σ2 → {0, 1}. The value
of an assignment α : V → Σ is the number of constraints satisfied by α; that is,
the value of α is |{(u, v) ∈ E : φ(u,v)(α(u), α(v)) = 1}|. We denote by vlt(G, Φ)
(standing for violation) the fraction of unsatisfied constraints under the best possible
assignment; that is,

vlt(G, Φ) = min
α:V→Σ

{ |{(u, v) ∈ E : φ(u,v)(α(u), α(v)) = 0}|
|E|

}

.

(3.4)

For various functions τ : N→ (0, 1], we will consider the promise problem gapCSPΣ
τ ,

having instances as above, such that the yes-instances are fully satisfiable instances
(i.e., vlt = 0) and the no-instances are pairs (G,Φ) for which vlt(G, Φ) ≥ τ(|G|)
holds, where |G| denotes the number of edges in G.

Note that 3SAT is reducible to gapCSPΣ0
τ0

for Σ0 = {F, T}3 and τ0(m) = 1/m (e.g.,
replace each clause by a vertex, and use edge-constraints that enforce mutually
consistent and satisfying assignments to each pair of clauses). Our goal is to reduce
3SAT (or rather gapCSPΣ0

τ0
) to gapCSPΣ

c , for some fixed finite Σ and constant c > 0.
The PCP Theorem will follow by showing a simple PCP system for gapCSPΣ

c . (The
relationship between constraint satisfaction problems and the PCP Theorem is
further discussed in Section 3.3.) The desired reduction of gapCSPΣ

τ0
to gapCSPΣ

Ω(1)

is obtained by iteratively applying the following reduction logarithmically many
times.

Lemma 3.6 (amplifying reduction of gapCSP to itself): For some finite Σ and
constant c > 0, there exists a polynomial-time computable function f such that, for
every instance (G, Φ) of gapCSPΣ, it holds that (G′, Φ′) = f(G, Φ) is an instance
of gapCSPΣ and the two instances are related as follows:

1. If vlt(G, Φ) = 0 then vlt(G′, Φ′) = 0.

50



2. vlt(G′, Φ′) ≥ min(2 · vlt(G, Φ), c).

3. |G′| = O(|G|).

That is, satisfiable instances are mapped to satisfiable instances, whereas instances
that violate a ν fraction of the constraints are mapped to instances that violate at
least a min(2ν, c) fraction of the constraints. Furthermore, the mapping increases
the number of edges (in the instance) by at most a constant factor. We stress that
both Φ and Φ′ consists of Boolean constraints defined over Σ2. Thus, by iteratively
applying Lemma 3.6 for a logarithmic number of times, we reduce gapCSPΣ

τ0
to

gapCSPΣ
Ω(1) and 3SAT ∈ PCP(log, O(1)) follows.

Proof Outline:11 Before turning to the proof, let us highlight the difficulty that
it needs to address. Specifically, the lemma asserts a “violation amplifying ef-
fect” (i.e., Items 1 and 2), while maintaining the alphabet Σ and allowing only a
moderate increase in the size of the graph (i.e., Item 3). Waiving the latter require-
ments allows a relatively simple proof that mimics (an augmented version of)12 the
“parallel repetition” of the corresponding PCP. Thus, the challenge is significantly
decreasing the “size blow-up” that arises from parallel repetition and maintaining
a fixed alphabet. The first goal (i.e., Item 3) calls for a suitable derandomiza-
tion, and indeed we shall use a “pseudorandom” generator based on random walks
on expander graphs. Those who read Sec. 3.2.2 may guess that the second goal
(i.e., fixed alphabet) can be handled using the proof composition paradigm. (The
rest of the overview is intended to be understood also by those who did not read
Sec. 3.2.2.)

The lemma is proved by presenting a three-step reduction. The first step is a
pre-processing step that makes the underlying graph suitable for further analysis
(e.g., the resulting graph will be an expander). The value of vlt may decrease
during this step by a constant factor. The heart of the reduction is the second
step in which we increase vlt by any desired constant factor. This is done by a
construction that corresponds to taking a random walk of constant length on the
current graph. The latter step also increases the alphabet Σ, and thus a post-
processing step is employed to regain the original alphabet (by using any inner
PCP systems; e.g., the one presented in Sec. 3.2.1). Details follow.

We first stress that the aforementioned Σ and c, as well as the auxiliary pa-
rameters d and t (to be introduced in the following two paragraphs), are fixed
constants that will be determined such that various conditions (which arise in the
course of our argument) are satisfied. Specifically, t will be the last parameter to
be determined (and it will be made greater than a constant that is determined by
all the other parameters).

We start with the pre-processing step. Our aim in this step is to reduce the input
(G, Φ) of gapCSPΣ to an instance (G1,Φ1) such that G1 is a d-regular expander

11For details, see [17].
12Advanced comment: The augmentation is used to avoid using the Parallel Repetition

Theorem of [46]. In the augmented version, with constant probability (say half), a consistency
check takes place between tuples that contain copies of the same variable (or query).

51



graph.13 Furthermore, each vertex in G1 will have at least d/2 self-loops, the
number of edges will be preserved up to a constant factor (i.e., |G1| = O(|G|)), and
vlt(G1, Φ1) = Θ(vlt(G, Φ)). This step is quite simple: essentially, the original
vertices are replaced by expanders of size proportional to their degree, and a big
(dummy) expander is “superimposed” on the resulting graph.

The main step is aimed at increasing the fraction of violated constraints by a
sufficiently large constant factor. The intuition underlying this step is that the
probability that a random (t-edge long) walk on the expander G1 intersects a fixed
set of edges is closely related to the probability that a random sample of (t) edges
intersects this set. Thus, we may expect such walks to hit a violated edge with
probability that is min(Θ(t ·ν), c), where ν is the fraction of violated edges. Indeed,
the current step consists of reducing the instance (G1, Φ1) of gapCSPΣ to an instance
(G2,Φ2) of gapCSPΣ′ such that Σ′ = Σdt

and the following holds:

1. The vertex set of G2 is identical to the vertex set of G1, and each t-edge
long path in G1 is replaced by a corresponding edge in G2, which is thus a
dt-regular graph.

2. The constraints in Φ2 refer to each element of Σ′ as a Σ-labeling of the
(“distance ≤ t”) neighborhood of a vertex (see Figure 3.3), and mandates
that the two corresponding labelings (of the endpoints of the G2-edge) are
consistent as well as satisfy Φ1. That is, the following two types of conditions
are enforced by the constraints of Φ2:

(consistency): If vertices u and w are connected in G1 by a path of length
at most t and vertex v resides on this path, then the Φ2-constraint
associated with the G2-edge between u and w mandates the equality of
the entries corresponding to vertex v in the Σ′-labeling of vertices u and
w.

(satisfying Φ1): If the G1-edge (v, v′) is on a path of length at most t starting
at u, then the Φ2-constraint associated with the G2-edge that corre-
sponds to this path enforces the Φ1-constraint that is associated with
(v, v′).

Clearly, |G2| = dt−1 · |G1| = O(|G1|), because d is a constant and t will be set
to a constant. (Indeed, the relatively moderate increase in the size of the graph
corresponds to the low randomness-complexity of selecting a random walk of length
t in G1.)

Turning to the analysis of this step, we note that vlt(G1, Φ1) = 0 implies
vlt(G2, Φ2) = 0. The interesting fact is that the fraction of violated constraints
increases by a factor of Ω(

√
t); that is, vlt(G2, Φ2) ≥ min(Ω(

√
t · vlt(G1, Φ1)), c).

Here we merely provide a rough intuition and refer the interested reader to [17]. We
13A d-regular graph is a graph in which each vertex is incident to exactly d edges. Loosely

speaking, an expander graph has the property that each moderately balanced cut (i.e., partition
of its vertex set) has relatively many edges crossing it. An equivalent definition, also used in the
actual analysis, is that, except for the largest eigenvalue (which equals d), all the eigenvalues of
the corresponding adjacency matrix have absolute value that is bounded away from d.

52



Figure 3.3: The amplifying reduction. The alphabet Σ′ as a labeling of
the distance t = 3 neighborhoods, when repetitions are omitted. In this
case d = 6 but the self-loops are not shown (and so the “effective” degree
is three). The two-sided arrow indicates one of the edges in G1 that will
contribute to the edge-constraint between u and w in (G2, Φ2).

may focus on any Σ′-labeling to the vertices of G2 that is consistent with some Σ-
labeling of G1, because relatively few inconsistencies (among the Σ-values assigned
to a vertex by the Σ′-labeling of other vertices) can be ignored, while relatively
many such inconsistencies yield violation of the “equality constraints” of many
edges in G2. Intuitively, relying on the hypothesis that G1 is an expander, it follows
that the set of violated edge-constraints (of Φ1) with respect to the aforementioned
Σ-labeling causes many more edge-constraints of Φ2 to be violated (because each
edge-constraint of Φ1 is enforced by many edge-constraints of Φ2). The point is
that any set F of edges of G1 is likely to appear on a min(Ω(t) · |F |/|G1|, Ω(1))
fraction of the edges of G2 (i.e., t-paths of G1). (Note that the claim would have
been obvious if G1 were a complete graph, but it also holds for an expander.)14

The factor of Ω(
√

t) gained in the second step makes up for the constant factor
lost in the first step (as well as the constant factor to be lost in the last step).

14We mention that, due to a technical difficulty, it is easier to establish the claimed bound of
Ω(
√

t · vlt(G1, Φ1)) rather than Ω(t · vlt(G1, Φ1)).

53



Furthermore, for a suitable choice of the constant t, the aforementioned gain yields
an overall constant factor amplification (of vlt). However, so far we obtained
an instance of gapCSPΣ′ rather than an instance of gapCSPΣ, where Σ′ = Σdt

.
The purpose of the last step is to reduce the latter instance to an instance of
gapCSPΣ. This is done by viewing the instance of gapCSPΣ′ as a PCP-system,15

and composing it with an inner-verifier using the proof composition paradigm out-
lined in Sec. 3.2.2. We stress that the inner-verifier used here needs only handle
instances of constant size (i.e., having description length O(dt log |Σ|)), and so
the verifier presented in Sec. 3.2.1 will do. The resulting PCP-system uses ran-
domness r

def= log2 |G2| + O(dt log |Σ|)2 and a constant number of binary queries,
and has rejection probability Ω(vlt(G2,Φ2)), which is independent of the choice
of the constant t. For Σ = {0, 1}O(1), we can obtain an instance of gapCSPΣ,
that has a Ω(vlt(G2, Φ2)) fraction of violated constraints. Furthermore, the size
of the resulting instance (which is used as the output (G′, Φ′) of the three-step
reduction) is O(2r) = O(|G2|), where the equality uses the fact that d and t
are constants. Recalling that vlt(G2, Φ2) ≥ min(Ω(

√
t · vlt(G1,Φ1)), c) and

vlt(G1, Φ1) = Ω(vlt(G, Φ)), this completes the (outline of the) proof of the entire
lemma.

Reflection. In contrast to the proof presented in Sec. 3.2.2, which combines two
remarkable constructs by using a simple composition method, the current proof
of the PCP Theorem is based on developing a powerful “combining method” that
improves the quality of the main system to which it is applied. This new method,
captured by the Amplification Lemma (Lemma 3.6), does not merely obtain the
best of the combined systems, but rather obtains a better system than the one given.
However, the quality-amplification offered by Lemma 3.6 is rather moderate, and
thus many applications are required in order to derive the desired result. Taking
the opposite perspective, one may say that remarkable results are obtained by a
gradual process of many moderate amplification steps.

3.3 PCP and Approximation

The characterization of NP in terms of probabilistically checkable proofs plays a
central role in the study of the complexity of natural approximation problems. To
demonstrate this relationship, we first note that any PCP system V gives rise to
an approximation problem that consists of estimating the maximum acceptance
probability for a given input; that is, on input x, the task is approximating the
probability that V accepts x when given oracle access to the best possible π (i.e.,
we wish to approximate maxπ{Pr[V π(x)=1]}). Thus, if S ∈ PCP(r, q) then decid-
ing membership in S is reducible to approximating the maximum among exp(2r+q)
quantities (corresponding to all effective oracles), where each quantity can be eval-
uated in time 2r · poly. For (the validity of) this reduction, an approximation up

15The PCP-system referred to here has arbitrary soundness error (i.e., it rejects the instance
(G2, Φ2) with probability vlt(G2, Φ2) ∈ [0, 1]).

54



to a constant factor (of 2) will do.
Note that the foregoing approximation problem is parameterized by a PCP ver-

ifier V , and its instances are given their value with respect to this verifier (i.e., the
instance x has value maxπ{Pr[V π(x)=1]}). This per se does not yield a “natural”
approximation problem. In order to link PCP systems with natural approxima-
tion problems, we take a closer look at the approximation problem associated with
PCP(r, q).

For simplicity, we focus on the case of non-adaptive PCP systems (i.e., all the
queries are determined beforehand based on the input and the internal coin tosses
of the verifier). Fixing an input x for such a system, we consider the 2r(|x|) Boolean
formulae that represent the decision of the verifier on each of the possible outcomes
of its coin tosses after inspecting the corresponding bits in the proof oracle. That is,
each of these 2r(|x|) formulae depends on q(|x|) Boolean variables that represent the
values of the corresponding bits in the proof oracle. Thus, if x is a yes-instance then
there exists a truth assignment (to these variables) that satisfies all 2r(|x|) formulae,
whereas if x is a no-instance then there exists no truth assignment that satisfies
more than 2r(|x|)−1 formulae. Furthermore, in the case that r(n) = O(log n), given
x, we can construct the corresponding sequence of formulae in polynomial-time.
Hence, the PCP Theorem (i.e., Theorem 3.3) yields NP-hardness results regarding
the approximation of the number of simultaneously satisfiable Boolean formulae of
constant size. This motivates the following definition.

Definition 3.7 (gap problems for SAT and generalized-SAT): For constants q ∈ N
and ε > 0, the promise problem gapGSATq

ε refers to instances that are each a se-
quence of q-variable Boolean formulae (i.e., each formula depends on at most q vari-
ables). The yes-instances are sequences that are simultaneously satisfiable, whereas
the no-instances are sequences for which no Boolean assignment satisfies more than
a 1− ε fraction of the formulae in the sequence. The promise problem gapSATq

ε is
defined analogously, except that in this case each instance is a sequence of dis-
junctive clause (i.e., each formula in each sequence consists of a single disjunctive
clause).

Indeed, each instance of gapSATq
ε is naturally viewed as q-CNF formulae, and we

consider an assignment that satisfies as many clauses (of the input CNF) as possible.
As hinted, NP ⊆ PCP(log, O(1)) implies that gapGSATO(1)

1/2 is NP-complete, which
in turn implies that for some constant ε > 0 the problem gapSAT3

ε is NP-complete.
The converses hold too.

Theorem 3.8 (equivalent formulations of the PCP Theorem). The following three
conditions are equivalent:

1. The PCP Theorem: there exists a constant q such that NP ⊆ PCP(log, q).

2. There exists a constant q such that gapGSATq
1/2 is NP-hard.

3. There exists a constant ε > 0 such that gapSAT3
ε is NP-hard.

55



The point of Theorem 3.8 is not its mere validity (which follows from the validity of
each of the three items), but rather the fact that its proof is quite simple. Note that
Items 2 and 3 make no reference to PCP. Thus, their (easy to establish) equivalence
to Item 1 manifests that the hardness of approximating natural optimization prob-
lems lies at the heart of the PCP Theorem. In general, probabilistically checkable
proof systems for NP yield strong inapproximability results for various classical
optimization problems.

Proof Sketch: Item 1 implies Item 2 via the argument outlined in the paragraph
preceding Definition 3.7, whereas Item 2 implies Item 3 via the standard reduction
of CSAT (“circuit SAT”) to 3SAT. To see that Item 2 (resp., Item 3) implies Item 1,
we present simple PCP systems for the corresponding gap problems (and use their
NP-completeness to derive PCP systems for all of NP). For example, we consider
a PCP verifier that, when given an instance of gapGSATq

1/2, selects at random a
(q-variable) formula in this instance and inspects the values of the corresponding
variables by making adequate queries to the oracle (which is supposed to consist
of a satisfying assignment).

Gap amplifying reductions – a reflection. Item 2 (resp., Item 3) of Theo-
rem 3.8 implies that GSAT (resp., 3SAT) can be reduce to gapGSATq

1/2 (resp., to
gapSAT3

ε). This means that there exist “gap amplifying” reductions of problems
like 3SAT to themselves, where these reductions map yes-instances to yes-instances
(as usual), while mapping no-instances to no-instances that are “far” from being
yes-instances. That is, no-instances are mapped to no-instances of a special type
such that a “gap” is created between the yes-instances and no-instances at the
image of the reduction. For example, in the case of 3SAT, unsatisfiable formu-
lae are mapped to formulae that are not merely unsatisfiable but rather have no
assignment that satisfies more than a 1 − ε fraction of the clauses. Thus, PCP
constructions are essentially “gap amplifying” reductions.

3.4 More on PCP itself: an overview

We start by discussing variants of the PCP characterization of NP, and next turn
to PCPs having expressing power beyond NP. Needless to say, the latter systems
have super-logarithmic randomness complexity.

3.4.1 More on the PCP characterization of NP

Interestingly, the two complexity measures in the PCP-characterization of NP
can be traded off such that at the extremes we get NP = PCP(log, O(1)) and
NP = PCP(0, poly), respectively.

Proposition 3.9 For every S ∈ NP, there exists a logarithmic function ` (i.e.,
` ∈ log) such that, for every integer function k that satisfies 0 ≤ k(n) ≤ `(n), it
holds that S ∈ PCP(`− k, O(2k)). (Recall that PCP(log, poly) ⊆ NP.)

56



Proof Sketch: By Theorem 3.3, we have S ∈ PCP(`,O(1)). To show that S ∈
PCP(`−k,O(2k)), we consider an emulation of the corresponding verifier in which
we try all possibilities for the k(n)-bit long prefix of its random-tape.

Following the establishment of Theorem 3.3, numerous variants of the PCP
Characterization of NP were explored. These variants refer to a finer analysis of
various parameters of probabilistically checkable proof systems (for sets in NP).
Following is a brief summary of some of these studies.

The length of PCPs. Recall that the effective length of the oracle in any
PCP(log, log) system is polynomial (in the length of the input). Furthermore,
in the PCP systems underlying the proof of Theorem 3.3 the queries refer only to
a polynomially long prefix of the oracle, and so the actual length of these PCPs for
NP is polynomial. Remarkably, the length of PCPs for NP can be made nearly-
linear (in the combined length of the input and the standard NP-witness), while
maintaining constant query complexity, where by nearly-linear we mean linear up
to a poly-logarithmic factor. (For details see [13, 17].) This means that a rel-
atively modest amount of redundancy in the proof oracle suffices for supporting
probabilistic verification via a constant number of queries.

The number of queries in PCPs. Theorem 3.3 asserts that a constant number
of queries suffice for PCPs with logarithmic randomness and soundness error of 1/2
(for NP). It is currently known that this constant is at most five, whereas with three
queries one may get arbitrary close to a soundness error of 1/2 (see [34]). The ob-
vious trade-off between the number of queries and the soundness error gives rise to
the robust notion of amortized query-complexity, defined as the ratio between the
number of queries and (minus) the logarithm (in based 2) of the soundness error.
For every ε > 0, any set in NP has a PCP system with logarithmic randomness
and amortized query-complexity 1 + ε, whereas only sets in P have PCPs of loga-
rithmic randomness and amortized query-complexity less than 1 (see [37] and [8],
respectively).

Free-bit complexity. The motivation for the notion of free bits came from the
PCP–to–MaxClique connection (see [8, Sec. 8]), but we believe that this notion is
of independent interest. Intuitively, this notion distinguishes between queries for
which the acceptable answer is determined by previously obtained answers (i.e., the
verifier compares the answer to a value determined by the previous answers) and
queries for which the verifier only records the answer for future usage. The latter
queries are called free (because any answer to them is “acceptable”). For example,
in the linearity test (see Sec. 3.2.1) the first two queries are free and the third is not
(i.e., the test accepts if and only if f(x) + f(y) = f(x + y)). The amortized free-bit
complexity is define analogously to the amortized query complexity. Interestingly,
NP has PCPs with logarithmic randomness and amortized free-bit complexity less
than any positive constant (see [35]).

57



Adaptive versus non-adaptive verifiers. Recall that a PCP verifier is called
non-adaptive if its queries are determined solely based on its input and the outcome
of its coin tosses. (A general verifier, called adaptive, may determine its queries also
based on previously received oracle answers.) Recall that the PCP Characterization
of NP (i.e., Theorem 3.3) is established using a non-adaptive verifier; however, it
turns out that adaptive verifiers are more powerful than non-adaptive ones in terms
of quantitative results: Specifically, for PCP verifiers making three queries and
having logarithmic randomness complexity, adaptive queries provide for soundness
error at most 0.51 (actually 0.5+ ε for any ε > 0) for any set in NP, whereas non-
adaptive queries provide soundness error 5/8 (or less) only for sets in P (see [34]
and [51], respectively).

Non-binary queries. Our definition of PCP allows only binary queries. Cer-
tainly, non-binary queries can be emulated by binary queries, but the converse does
not necessarily hold.16 For this reason, “parallel repetition” is highly non-trivial in
the PCP setting. Still, a Parallel Repetition Theorem that refers to independent
invocations of the same PCP is known [46], but it is not applicable for obtaining
soundness error smaller than a constant (while preserving logarithmic randomness).
Nevertheless, using adequate “consistency tests” one may construct PCP systems
for NP using logarithmic randomness, a constant number of (non-binary) queries
and soundness error exponential in the length of the answers (see [18]). (Currently,
this is known only for sub-logarithmic answer lengths.)

3.4.2 Stronger forms of PCP systems for NP

Although the PCP Theorem is famous mainly for its negative applications to the
study of natural approximation problems, its potential for direct positive applica-
tions is fascinating. Indeed, the vision of speeding-up the verification of mundane
proofs is exciting, where these proofs may refer to mundane assertions such as the
correctness of a specific computation. Enabling such a speed-up requires a strength-
ening of the PCP Theorem such that it mandates efficient verification time rather
than “merely” low query-complexity of the verification task. Such a strengthening
is possible.

Theorem 3.10 (Theorem 3.3 – strengthened): Every set S in NP has a PCP
system V of logarithmic randomness-complexity, constant query-complexity, and
quadratic time-complexity. Furthermore, NP-witnesses for membership in S can be
transformed in polynomial-time to corresponding proof-oracles for V .

16Advanced comment: The source of trouble is the adversarial settings (implicit in the
soundness condition), which means that when several binary queries are packed into one non-
binary query, the adversary need not respect the packing (i.e., it may answer inconsistently on
the same binary query depending on the other queries packed with it). This trouble becomes
acute in the case of PCPs, because they do not correspond to a full information game. Indeed,
in contrast, parallel repetition is easy to analyze in the case of interactive proof systems, because
they can be modeled as full information games: this is obvious in the case of public-coin systems,
but also holds for general interactive proof systems.

58



The furthermore part was already stated in Section 3.2 (as a strengthening of
Theorem 3.3). Thus, the novelty in Theorem 3.10 is that it provides quadratic
verification time, rather than polynomial verification time (where the polynomial
may depend arbitrarily on the set S). Theorem 3.10 is proved by noting that the
CNF formulae that are obtained by reducing S to 3SAT are highly uniform, and
thus the verifier V that is outlined in Sec. 3.2.2 can be implemented in quadratic
time. Indeed, the most time-consuming operation required of V is evaluating the
low-degree extension Φ (of Cφ), which corresponds to the input formula φ, at a few
points. In the context of Sec. 3.2.2, evaluating Φ in exponential-time suffices (since
this means time that is polynomial in |φ|). Theorem 3.10 follows by showing that
a variant of Φ can be evaluated in polynomial-time (since this means time that is
polylogarithmic in |φ|).

PCPs of Proximity. Clearly, we cannot expect a PCP system (or any standard
proof system for that matter) to have sub-linear verification time (since linear-
time is required for merely reading the input). Nevertheless, we may consider a
relaxation of the verification task (regarding proofs of membership in a set S). In
this relaxation the verifier is only required to reject any input that is “far” from
S (regardless of the alleged proof), and, as usual, accept any input that is in S
(when accompanied with an adequate proof). Specifically, in order to allow sub-
linear time verification, we provide the verifier V with direct access to the bits
of the input (which is viewed as an oracle) as well as with direct access to the
usual (PCP) proof-oracle, and require that the following two conditions hold (with
respect to some constant ε > 0):

Completeness: For every x ∈ S there exists a string πx such that, when given access
to the oracles x and πx, machine V always accepts.

Soundness with respect to proximity ε: For every string x that is ε-far from S (i.e.,
for every x′ ∈ {0, 1}|x| ∩ S it holds that x and x′ differ on at least ε|x| bits)
and every string π, when given access to the oracles x and π, machine V
rejects with probability at least 1

2 .

Machine V is called a PCP of proximity, and its queries to both oracles are counted
in its query-complexity. (Indeed, a PCP of proximity was used in Sec. 3.2.2, and
the notion is analogous to a relaxation of decision problems that is called “property
testing”.)

We mention that every set in NP has a PCP of proximity of logarithmic
randomness-complexity, constant query-complexity, and polylogarithmic time-complexity.
This follows by using ideas as underlying the proof of Theorem 3.10.

3.4.3 PCP with super-logarithmic randomness

Our focus so far was on the important case where the verifier tosses logarithmically
many coins, and hence the “effective proof length” is polynomial. Here we mention

59



that the PCP Theorem (or rather Theorem 3.10) scales up.17

Theorem 3.11 (Theorem 3.3 – Generalized): Let t(·) be an integer function such
that n<t(n)<2poly(n). Then, Ntime(t) ⊆ PCP(O(log t), O(1)).

Recall that PCP(r, q) ⊆ Ntime(t), for t(n) = poly(n) · 2r(n). Thus, the Ntime
Hierarchy implies a hierarchy of PCP(·, O(1)) classes, for randomness complexity
ranging between logarithmic and polynomial functions.

17Note that the sketched proof of Theorem 3.10 yields verification time that is quadratic in the
length of the input and polylogarithmic in the length of the NP-witness.

60



Bibliographic Notes

Motivated by the desire to formulate the most general type of “proofs” that may
be used within cryptographic protocols, Goldwasser, Micali and Rackoff [32] intro-
duced the notion of an interactive proof system. Although the main thrust of their
work was the introduction of a special type of interactive proofs (i.e., ones that
are zero-knowledge), the possibility that interactive proof systems may be more
powerful from NP-proof systems was pointed out in [32]. Independently of [32],18

Babai [3] suggested a different formulation of interactive proofs, which he called
Arthur-Merlin Games (and conjectured to be “very close” to NP). Syntactically,
Arthur-Merlin Games are a restricted form of interactive proof systems, yet it was
subsequently shown that these restricted systems are as powerful as the general
ones [33]. The speed-up result (i.e., AM(2f) ⊆ AM(f)) is due to [6] (improving
over [3]).

The first evidence to the power of interactive proofs was given by Goldreich, Mi-
cali, and Wigderson [28], who presented an interactive proof system for Graph Non-
Isomorphism (Construction 1.3). More importantly, they demonstrated the gen-
erality and wide applicability of zero-knowledge proofs: Assuming the existence of
one-way function, they showed how to construct zero-knowledge interactive proofs
for any set in NP (Theorem 2.5). This result has had a dramatic impact on the de-
sign of cryptographic protocols (cf., [29]). For further discussion of zero-knowledge
and its applications to cryptography, see [25, 26]. Theorem 2.6 (i.e., ZK = IP) is
due to [10, 38].

Probabilistically checkable proof (PCP) systems are related to multi-prover in-
teractive proof systems, a generalization of interactive proofs that was suggested
by Ben-Or, Goldwasser, Kilian and Wigderson [11]. Again, the main motivation
came from the zero-knowledge perspective; specifically, presenting multi-prover
zero-knowledge proofs for NP without relying on intractability assumptions. Yet,
the complexity theoretic prospects of the new class, denoted MIP, have not been
ignored. The latter class turned out to be equivalent to a class introduced in [22],
which in turn coincides with the current formulation of probabilistically checkable
proofs (i.e., PCP).

18Although [32] and [3] have appeared in the same conference (i.e., 17th STOC, 1985), early
versions of [32] have existed as early as 1982, and were rejected three times from major conferences
(i.e., FOCS83, STOC84, and FOCS84). In contrast to the motivation of Goldwasser et. al. [32],
Babai’s motivation was placing a group-theoretic problem, previously placed in NP under some
group-theoretic assumptions, “as close to NP as possible” without using any assumptions.

61



The amazing power of interactive proof systems was demonstrated by using
algebraic methods. The basic technique was introduced by Lund, Fortnow, Karloff
and Nisan [40], who applied it to show that the polynomial-time hierarchy (and
actually P#P) is in IP. Subsequently, Shamir [48] used the technique to show
that IP = PSPACE , and Babai, Fortnow and Lund [4] used it to show that
MIP = NEXP. (Our entire proof of Theorem 1.4 follows [48].)

The aforementioned multi-prover proof system of Babai, Fortnow and Lund [4]
(hereafter referred to as the BFL proof system) has been the starting point for fun-
damental developments regarding NP. The first development was the discovery
that the BFL proof system can be “scaled-down” from NEXP to NP. This im-
portant discovery was made independently by two sets of authors: Babai, Fortnow,
Levin, and Szegedy [5] and Feige, Goldwasser, Lovász, and Safra [20]. However,
the manner in which the BFL proof is scaled-down is different in the two papers,
and so are the consequences of the scaling-down.

Babai et. al. [5] start by considering (only) inputs encoded using a special error-
correcting code. The encoding of strings, relative to this error-correcting code, can
be computed in polynomial time. They presented an almost-linear time algorithm
that transforms NP-witnesses (to inputs in a set S ∈ NP) into transparent proofs
that can be verified (as vouching for the correctness of the encoded assertion)
in (probabilistic) poly-logarithmic time (by a Random Access Machine). Babai
et. al. [5] stress the practical aspects of transparent proofs; specifically, for rapidly
checking transcripts of long computations.

In contrast, in the proof system of Feige et. al. [20, 21] the verifier stays
polynomial-time and only two more refined complexity measures (i.e., the ran-
domness and query complexities) are reduced to poly-logarithmic. This eliminates
the need to assume that the input is in a special error-correcting form, and yields
a refined (quantitative) version of the notion of probabilistically checkable proof
systems, where the refinement is obtained by specifying the randomness and query
complexities (see Definition 3.1). Hence, whereas the BFL proof system [4] can
be reinterpreted as establishing NEXP = PCP(poly, poly), the work of Feige
et. al. [21] establishes NP ⊆ PCP(f, f), where f(n) = O(log n · log log n). (We
note that the work of Babai et. al. [5] implies that NP ⊆ PCP(log, polylog).)

Interest in the new complexity class became immense since Feige et. al. [20, 21]
demonstrated its relevance to proving the intractability of approximating some nat-
ural combinatorial problems (specifically, for MaxClique). When using the PCP–
to–MaxClique connection established by Feige et. al., the randomness and query
complexities of the verifier (in a PCP system for an NP-complete set) relate to
the strength of the negative results obtained for the approximation problems. This
fact provided a very strong motivation for trying to reduce these complexities and
obtain a tight characterization of NP in terms of PCP(·, ·). The obvious challenge
was showing that NP equals PCP(log, log). This challenge was met by Arora and
Safra [2]. Actually, they showed that NP = PCP(log, q), where q(n) = o(log n).

Hence, a new challenge arose; namely, further reducing the query complexity –
in particular, to a constant – while maintaining the logarithmic randomness com-
plexity. Again, additional motivation for this challenge came from the relevance of

62



such a result to the study of natural approximation problems. The new challenge
was met by Arora, Lund, Motwani, Sudan and Szegedy [1], and is captured by the
PCP Characterization Theorem, which asserts that NP = PCP(log, O(1)).

Indeed the PCP Characterization Theorem is a culmination of a sequence of
impressive works [40, 4, 5, 21, 2, 1]. These works are rich in innovative ideas (e.g.,
various arithmetizations of SAT as well as various forms of proof composition) and
employ numerous techniques (e.g., low-degree tests [14, 47], self-correction [14],
and pseudorandomness w.r.t linear tests [43]). Our overview of the original proof
of the PCP Theorem (in Sec. 3.2.1–3.2.2) is based on [1, 2].19 The alternative proof
outlined in Sec. 3.2.3 is due to Dinur [17].

We mention some of the ideas and techniques involved in deriving even stronger
variants of the PCP Theorem (which are surveyed in Sec. 3.4.1). These include the
Parallel Repetition Theorem [46], the use of the Long-Code [8], and the application
of Fourier analysis in this setting [35, 36]. We also highlight the notions of PCPs
of proximity and robustness (see [12, 19]).

Computationally-Sound Proof Systems. Argument systems were defined
by Brassard, Chaum and Crépeau [16], with the motivation of providing perfect
zero-knowledge arguments (rather than zero-knowledge proofs) for NP. A few
years later, Kilian [39] demonstrated their significance beyond the domain of zero-
knowledge by showing that, under some reasonable intractability assumptions, ev-
ery set in NP has a computationally-sound proof in which the randomness and
communication complexities are poly-logarithmic.20 Interestingly, these argument
systems rely on the fact thatNP ⊆ PCP(f, f), for f(n) = poly(log n). We mention
that Micali [41] suggested a different type of computationally-sound proof systems
(which he called CS-proofs).

Final comment: The current text is a revision of [24, Chap. 2]. In particular,
more details are provided here for the main topics, whereas numerous secondary
topics discussed in [24, Chap. 2] are not mentioned here (or are only briefly men-
tioned here). We note that a few of the research directions that were mentioned
in [24, Sec. 2.4.4] have received considerable attention in the period that elapsed,
and improved results are currently known. In particular, the interested reader is
referred to [12, 13, 17] for a study of the length of PCPs, and to [37] for a study
of their amortized query complexity. Likewise, a few open problems mentioned
in [24, Sec. 2.6.3] have been resolved; specifically, the interested reader is referred
to [7, 44] for breakthrough results regarding zero-knowledge.

19Our presentation also benefits from the notions of PCPs of proximity and robustness, put
forward in [12, 19].

20We comment that interactive proofs are unlikely to have such low complexities; see [31].

63



Bibliography

[1] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Verification
and Intractability of Approximation Problems. Journal of the ACM, Vol. 45,
pages 501–555, 1998. Preliminary version in 33rd FOCS, 1992.

[2] S. Arora and S. Safra. Probabilistic Checkable Proofs: A New Characteriza-
tion of NP. Journal of the ACM, Vol. 45, pages 70–122, 1998. Preliminary
version in 33rd FOCS, 1992.

[3] L. Babai. Trading Group Theory for Randomness. In 17th ACM Symposium
on the Theory of Computing, pages 421–429, 1985.

[4] L. Babai, L. Fortnow, and C. Lund. Non-Deterministic Exponential Time has
Two-Prover Interactive Protocols. Computational Complexity, Vol. 1, No. 1,
pages 3–40, 1991. Preliminary version in 31st FOCS, 1990.

[5] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking Computations in
Polylogarithmic Time. In 23rd ACM Symposium on the Theory of Computing,
pages 21–31, 1991.

[6] L. Babai and S. Moran. Arthur-Merlin Games: A Randomized Proof System
and a Hierarchy of Complexity Classes. Journal of Computer and System
Science, Vol. 36, pp. 254–276, 1988.

[7] B. Barak. Non-Black-Box Techniques in Crypptography. PhD Thesis, Weiz-
mann Institute of Science, 2004.

[8] M. Bellare, O. Goldreich and M. Sudan. Free Bits, PCPs and Non-
Approximability – Towards Tight Results. SIAM Journal on Computing,
Vol. 27, No. 3, pages 804–915, 1998. Extended abstract in 36th FOCS, 1995.

[9] M. Bellare, R. Impagliazzo and M. Naor. Does Parallel Repetition Lower the
Error in Computationally Sound Protocols? In 38th IEEE Symposium on
Foundations of Computer Science, pages 374–383, 1997.

[10] M. Ben-Or, O. Goldreich, S. Goldwasser, J. H̊astad, J. Kilian, S. Micali
and P. Rogaway. Everything Provable is Probable in Zero-Knowledge. In
Crypto88, Springer-Verlag Lecture Notes in Computer Science (Vol. 403),
pages 37–56, 1990

64



[11] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-Prover Inter-
active Proofs: How to Remove Intractability. In 20th ACM Symposium on
the Theory of Computing, pages 113–131, 1988.

[12] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust
PCPs of Proximity, Shorter PCPs, and Applications to Coding. SIAM Jour-
nal on Computing, Vol. 36 (4), pages 889–974, 2006. Extended abstract in
36th STOC, 2004.

[13] E. Ben-Sasson and M. Sudan. Simple PCPs with Poly-log Rate and Query
Complexity. In 37th ACM Symposium on the Theory of Computing, pages
266–275, 2005.

[14] M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Appli-
cations to Numerical Problems. Journal of Computer and System Science,
Vol. 47, No. 3, pages 549–595, 1993.

[15] R. Boppana, J. H̊astad, and S. Zachos. Does Co-NP Have Short Interactive
Proofs? Information Processing Letters, Vol. 25, May 1987, pages 127–132.

[16] G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of
Knowledge. Journal of Computer and System Science, Vol. 37, No. 2, pages
156–189, 1988. Preliminary version by Brassard and Crépeau in 27th FOCS,
1986.

[17] I. Dinur. The PCP Theorem by Gap Amplification. In 38th ACM Symposium
on the Theory of Computing, pages 241–250, 2006.

[18] I. Dinur. E. Fischer, G. Kindler, R. Raz, and S. Safra. Characterizations of
NP: Towards a Polynomially-Small Error-Probability. In 31st ACM Sympo-
sium on the Theory of Computing, pages 29–40, 1999

[19] I. Dinur and O. Reingold. Assignment-testers: Towards a combinatorial proof
of the PCP-Theorem. SIAM Journal on Computing, Vol. 36 (4), pages 975–
1024, 2006. Extended abstract in 45th FOCS, 2004.

[20] U. Feige, S. Goldwasser, L. Lovász and S. Safra. On the Complexity of
Approximating the Maximum Size of a Clique. Unpublished manuscript,
1990.

[21] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Approximating
Clique is almost NP-complete. Journal of the ACM, Vol. 43, pages 268–292,
1996. Preliminary version in 32nd FOCS, 1991.

[22] L. Fortnow, J. Rompel and M. Sipser. On the power of multi-prover interac-
tive protocols. In 3rd IEEE Symp. on Structure in Complexity Theory, pages
156–161, 1988. See errata in 5th IEEE Symp. on Structure in Complexity
Theory, pages 318–319, 1990.

65



[23] M. Fürer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On Complete-
ness and Soundness in Interactive Proof Systems. Advances in Computing
Research: a research annual, Vol. 5 (Randomness and Computation, S. Mi-
cali, ed.), pages 429–442, 1989.

[24] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandom-
ness. Algorithms and Combinatorics series (Vol. 17), Springer, 1999.

[25] O. Goldreich. Foundation of Cryptography: Basic Tools. Cambridge Univer-
sity Press, 2001.

[26] O. Goldreich. Foundation of Cryptography: Basic Applications. Cambridge
University Press, 2004.

[27] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cam-
bridge University Press, 2008.

[28] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but
their Validity or All Languages in NP Have Zero-Knowledge Proof Systems.
Journal of the ACM, Vol. 38, No. 3, pages 691–729, 1991. Preliminary version
in 27th FOCS, 1986.

[29] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game –
A Completeness Theorem for Protocols with Honest Majority. In 19th ACM
Symposium on the Theory of Computing, pages 218–229, 1987.

[30] O. Goldreich and E. Petrank. Quantifying Knowledge Complexity. Compu-
tational Complexity, Vol. 8, pages 50–98, 1999.

[31] O. Goldreich, S. Vadhan and A. Wigderson. On interactive proofs with a
laconic provers. Computational Complexity, Vol. 11, pages 1–53, 2002.

[32] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of
Interactive Proof Systems. SIAM Journal on Computing, Vol. 18, pages 186–
208, 1989. Preliminary version in 17th STOC, 1985. Earlier versions date to
1982.

[33] S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interactive
Proof Systems. Advances in Computing Research: a research annual, Vol. 5
(Randomness and Computation, S. Micali, ed.), pages 73–90, 1989. Extended
abstract in 18th STOC, 1986.

[34] V. Guruswami, D. Lewin, M. Sudan and L. Trevisan. A tight characterization
of NP with 3 query PCPs. In 39th IEEE Symposium on Foundations of
Computer Science, pages 8–17, 1998.

[35] J. H̊astad. Clique is hard to approximate within n1−ε. Acta Mathematica,
Vol. 182, pages 105–142, 1999. Preliminary versions in 28th STOC (1996)
and 37th FOCS (1996).

66



[36] J. H̊astad. Getting optimal in-approximability results. Journal of the ACM,
Vol. 48, pages 798–859, 2001. Extended abstract in 29th STOC, 1997.

[37] J. H̊astad and S. Khot. Query efficient PCPs with pefect completeness. In
42nd IEEE Symposium on Foundations of Computer Science, pages 610–619,
2001.

[38] R. Impagliazzo and M. Yung. Direct Zero-Knowledge Computations. In
Crypto87, Springer-Verlag Lecture Notes in Computer Science (Vol. 293),
pages 40–51, 1987.

[39] J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments. In
24th ACM Symposium on the Theory of Computing, pages 723–732, 1992.

[40] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic Methods for In-
teractive Proof Systems. Journal of the ACM, Vol. 39, No. 4, pages 859–868,
1992. Preliminary version in 31st FOCS, 1990.

[41] S. Micali. Computationally Sound Proofs. SIAM Journal on Computing,
Vol. 30 (4), pages 1253–1298, 2000. Preliminary version in 35th FOCS, 1994.

[42] P.B. Miltersen and N.V. Vinodchandran. Derandomizing Arthur-Merlin
Games using Hitting Sets. Computational Complexity, Vol. 14 (3), pages
256–279, 2005. Preliminary version in 40th FOCS, 1999.

[43] J. Naor and M. Naor. Small-bias Probability Spaces: Efficient Constructions
and Applications. SIAM Journal on Computing, Vol 22, 1993, pages 838–856.
Preliminary version in 22nd STOC, 1990.

[44] M. Nguyen, S.J. Ong, S. Vadhan. Statistical Zero-Knowledge Arguments for
NP from Any One-Way Function. In 47th IEEE Symposium on Foundations
of Computer Science, pages 3-14, 2006.

[45] K. Pietrzak and D. Wikström. Parallel Repetition of Computationally Sound
Protocols, Revisited. In 4th TCC, Springer, Lecture Notes in Computer
Science (Vol. 4392), pages 86–102, 2007.

[46] R. Raz. A Parallel Repetition Theorem. SIAM Journal on Computing,
Vol. 27 (3), pages 763–803, 1998. Extended abstract in 27th STOC, 1995.

[47] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with
applications to program testing. SIAM Journal on Computing, Vol. 25 (2),
pages 252–271, 1996.

[48] A. Shamir. IP = PSPACE. Journal of the ACM, Vol. 39, No. 4, pages
869–877, 1992. Preliminary version in 31st FOCS, 1990.

[49] S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD
Thesis, Department of Mathematics, MIT, 1999. Available from
http://www.eecs.harvard.edu/∼salil/papers/phdthesis-abs.html.

67



[50] S. Vadhan. An Unconditional Study of Computational Zero Knowledge.
SIAM Journal on Computing, Vol. 36 (4), pages 1160–1214, 2006. Extended
abstract in 45th FOCS, 2004.

[51] U. Zwick. Approximation algorithms for constraint satisfaction problems
involving at most three variables per constraint. In 9th SODA, 1998, pages
201–210.

68


