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Abstract

Alice and Bob want to flip a coin by televhone.
(They have just divorced, live in different cities,
want to decide who gets the car.) Zob would not like
to tell Alice HEADS and hear Alice {at the other end
of the line) say "Here goes... I'm flipping the
coiRe... You lost!™

Coin-flipping in the SPECTAL way done here has
a4 serigus purpose. Indeed, it should prove an
INDISPENSABLE TOOL of the' pratocol designer. When-
ever a protocol requires one of two adversaries, say
Alice, to pick a sequence of dits at random, and
whenever it aerves Alice's interests best ¥OT to
pick her sequence of bdits at random, then coin-
flipping (Bob flipping coims to Alice) as defined
here achieves the dssired goal:

1. It GUARANTEES to Bob that Alice will vpick her
Sequence of bits at random. Her bit is 1 if
Bob flips heads to her, O otherwise.

It GUARANTEES to Alice that Bob ¥1ll not know
WHAT sequence of bits he flipped to her.

Coin-flipping has
solving a number of pro

already proved useful in
blems once thought impossi-
ble: mental poker, certified mail, and exchange of
secrsts. It will certainly prove a useful tool 1in
solving other problems as well.

Introduction

Plipping coins by telephone is EASY, as we show
below, if one assumes the axistence of a COMPLETELY
SECURE one-way function. A (NORMALLY SECURE) ONE-WAY
FUNCTION is an efficiently computable function of
Jome set into itself whose inverse cannot be com-
putad efficiently except or & negligible fraction of
values. A COMPLETELY SECURE ONE-WAY PUNCTION has the
additional property that from a knovledge of f{x),
one cannot have more than a 50-50 chance to guess
efficiently if x has some nontrivial property, =.gz.,
is even (1sb = O} or odd (lsb = 1),

To flip coins, Alice and 3o
completely secure 1= one-way
selects an integer r unknown *o Bob, computes f(x)
and sends f(x) %o Bob. Bob, who cannot determipe
some aontrivial property of x from f£(x), talls Alice
“hether he thinks x is even aor odd (this is where
300 flips a coin to Alice). At this point, Ailice
can tell if nhe guessed right or wrong. To comvince
Bob, she sends him x.

b should agree on a
funetion f. Alice then

Such completaly secure one-way functions, how-
8Ver, may not oanly be hard to discover, they may not

*
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even oxist. We show how a normally secure one-way
functicon can be used o flip coins in a completely
secure fashion. Our one-way function is 2-1, i.e.,
it maps exactly two slements from its domain to each

element of its range. A simple property, szay even
or oddness, will distinguish the &4wo elements x,7
that map to the same element f(x) = 5(y). If Alice

selects x and sends f£(x) to Zab, he ABSOLUTELY CAN-
¥OT DETERMINE whethsr she selec*ed the x or the 7, x
F 7, such that f£(x) = f(y). He guesses whether sne
picked the aven or odd aumber. His zuess as told 3o
Alice constitutes his coin flip o her. Since f is
one-way, Alice cannot cheat, i.e., cannot tell aim 7
if in fact she selected x.

A coin-flipping protocol with the right proper-
tles, of which the one presented here is an examplse,
has numerous aPplications, eg., to the exchange of

secret) keys [3'S1], to the certified mail problem
BR '81] and o the solution of mental poker
SRA’78] WITHOUT commutative locks [Mc'81].  The
BIGHT PROPERTIES are:

1e

[

If either participant following protocsl does
not catch the other cheating, he or she can e
sure that the c¢oins sach have exgctly S50-50
independent chance to come up heads (provable
under the reasonable assumption that fac*oring

is hard).

2. If either participant catches the other chea?-
ing, he or she can prove it %o a judge (this
assumes that all messages are sent signed).

3. After Bob flips coins to Alice, she knows which
coins came up heads, which tails., He should
have absolutely YO idea how they came up (not
even a good guess).

4. After the segueace of coin flips, Alice should

be adle to prove :o Bob which coins came up
heads, which tailas.

A COIN-PLIPPING PROTOCOL WITY THESE PROPERTIZS CAN
3E USED IN ANY PROTOCOL THAT EQUIRES ONE JF TWO
ADVERSARIES, SAY ALICE, TO, GENERATE AND USE A RANDOM
NUMBER, x, W¥ITHOUT REVEALING [T TO HER QPPONENT,
S30B. EVEN IF IT IS TO HER ADVANTAGE TQ SELZCT A PAR-
TICULAR NONRANDOM ., SHE WILL YOT 38 ABLE 70 20 so0.

30B FORCES ALICE T0 CHOOSE x AT RANDOM 3Y FLIPPING
COINS 7O HER.

THE RESULTING SECUENCT OF 2ITS IS COMPLETELY JNKNOWN

TO 30B AND, FROVIDED 30B FOLLOWS PROTOCCL, <ZOM-
PLETELY RANDOM. ALICE USES THE SEQUENCE AS  THE
REQUIRED RANDOM YUMBER, x. LATER, 3SHE PROVES T0 208

THAT HE FLIPPED THE SEQUENCE r TO HER,
HIM IT WAS CHOSZN AT RANDOM.

THUS ASSURING
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In additicn to the above preoperties, the coin-
lipping protocol presented here has the following
useful properties:

1. Bach participant XNOWS at each step along the
way if the other cheated. He or she does not
require later proof (e.g., after Alice has
revealed the result of the coin-flips to Bob)
to determine this. The court is needed only to
provide justice, to give independent proof of
wrong {or right) doing, or to force an adver-
sary to complete the protocol.

Bob can use his public-key, n, provided it 1is
constructed correctly, to flip coins.

Bob does not have to create new primes for each
coin-flip. Each coin~flip only requires compu-
tation time of the order the time required to
compute a Jacobi symbol, (x/m), for 0 < x < n
and n = a 160-digit number. The Jacobi symbol,
(z/n), can be computed quickly, in the same
order of time required to compute the greatest
common divisor, ged (x,y).

ASSUMPTIONS:

1. Factorization: We assume that no procedure can
efficiently factor a number n that is a product
of two large primes, except for a negligible
fraction of such numbers n. In 198C technology,
this means that a product of <two 80-digit
primes cannot be factored in reasonable time
(not even 35 years) using the most advanced
available technology (1000 CRAY-1's working in
parallel) on any but a negligible fraction (one
in Avogadro's uumber) of such numbers. A
coin-flipping protocol based on the intracta-
bility of the discrete logarithm rather 4han
factorization appears in [BM 81]

Random Number Generation: We assume that Bob
and Alice each have their own true random
number generators. The coin-flipping protocol
shows how the random number generators enable
Bob to generate and flip random bits to Alice.

Signatures: Some of the messages in the proto-
col below are required to be signed. ¥e assunme
the eristence of a secure signature scheme of
the sort first suggested by Diffie and Hellman
in 1976 [DH 79], and as implemented by Rivest,

Shamir, and Adleman [RSA'78] and Rabin [R'79].

Signed messages are placed in quotes and ter-
minated with the signer’s name. It is expected
that each participant knows (from the protocol)
if the message he or she receives is suppcsed
to bYe signed and refuses to continue the

exchange unless the received message IS prop-
erly signed.

THE JACOBI SYMBOL:

The Jacobi symvol (x/n) is defined for odd positive
integers n and arbitrary (positive and negative)
integers x. It has values 0, +1, or -1. As pointed
out earlier, the computation of (x/n) is similar to
the computation of ged(x,n) and takes the same order
of time to compute [A' 7sj An algorithm for comput-
ing (x/n) can easily be constructed from the follow-
ing ¢of its properties:

x, xt, x2, ... are arbitrary (positive or negative)
integers, n, n1, n2, ... are positive odd integers:

x/n) = 0 if ged (x,n) # 1
1/n) = 1
(x1’12 )/n) = (x1/n)*(x2/n)

1 (
2.
3.0 ¢
4. (x/(nt*n2)) = (x/n1)*(x/n2)
5.
6. (-

x1/n) = (x2/n) if x1 = x2 mod n
t/n) = +1 if n = 1 mod 4
<1 if n = 3 pod 4
7. (2/n) = +t if n =1 or 7 mod 8
-1 if n = 3 or 5 mod 8
8. (n1/n2) = (n2/n1) if ged (n1,n2) = 1
and [n1 or n2 = 1 mod 4]
-(n2/n1) if ged (n1,a2) = 1
and [nt and n2 = 3 od 4]
EXAMPLE: (23/59) = -(59/23) = -(13/23) =

-{23/13) = -(10/13) =
-(2/13)%(5/1%) = (5/13) = (13/5) =
(3/5) = (5/3) = (2/3) = -1.

THE GROUP Zn*

For n a positive integer greater than !, define Zn*
to be the group of positive integers less than n
that are relatively prime to n, the group operation
being multiplication mod n.

LEMMA

Let n = p1® * .., * k€K | uhere k iz an integer
greater than 1; p!,...,pk are distinct odd primes;
and el,...,ek are positive integers. Let a in Zn* be
s quadratic residue (square of an integer) mod n.

a mod n is of

Then every soluticn in Zn* of x2
the form

EQ 1: x [« (x1#vi#p2e2 » |, # prek) +
(x2%v2#prel » _  » peek) A oeel * (xk*vk®pre!
* p(x-1)e(k=1))] mod n,

L J

where vi is a ny lnteger such that (vi%p2e2 * ... *
pkek) mod p1® 4 [footnote 1]. v2,...,vk are
defined simzlarly.

PROOF

??? LeVeque [L'77],
i1

Theoremsa 3.21 & 5.2.

THEOREM 1 R

If n is any odd positive integer, so n = p?e’
*,..%2k®% j5 defined as in the statement of the
lemma except that k = 1 iz alsc permitted, then 1,

2, 3 are equivalent:

1.  there exist x,7y in Zn* such that x° = y2 mod n

and (x/n) ¥ (y/2).
2. pi®l = 3 pod 4 for some i.

Let & in Zn* be a quadratic residue mod n.
Then exactly half the roots in Zn* of the equa-
tion a = x2 mod n have Jacobi symbol (x/n) = +1
{the other half have (x/n) = -T{m

PROOF

134

[footnote 7]: vl is easily generated by the BEu-

clidean algorithm{ which, when applzed to the en-
tries in ged (piel, p2ed # ?ke } = yields
integers ui, vi such that u1'p1e + v1'pZe *
*pkeX = 1},

Copyright (c) 1998, Springer-Verlag



t => 2: Suppose to the contrary that piel =
mod 4 for all i. Let a in Za* bpe any quadratic
residue mod n. If k = 1, then a = x mod n has
exactly two roots, x and -x [footnote 2}. These
satisfy

(x/n) = (x/n)*(-1/n) since (=1/n) =
*1 when n = 1 nod 4

= (-x/n).
This contradicts ! for k = 1.
If X > 1, then by the lemma, ¥ satisfies equa-
tion 1. Therefore,.

(x/p1et) = (x1/p1el)

= (-x1/p1€1)} since (-1/p1€1) = +1,
Therefore, any two solutions x,y satisfy (x/pi®!)
(y/p1el). Similarly, (x/p2e?)
(y/p222),...,(x/pkek) = (y/pk®%). Therefore (x/a)
(y/n). This contradicts 1.

2 => 3: Bquation ! gives all roots of a = x2
mod n. Let the root y be obtained from x by changing
the si§n of xi, where pi®: = 3 god 4. Then (x/n) =
(2(=/71;)'---’(x/pk°k) = =(y/pr®)r (/) .
-{y/n).

3 = 1

Immediate.
N
il

PUBLICATION DATE OF n

In the firast message of the following protocol, Bobd
reveals s number n together with its PUBLICATION
DATE defined to be the date on whiech it was first
published. A statute of limitations prohibits
either party from bringing the other to court, asay,
5 years after that publication date. This limita-
tion is needed for several reascns:

1. Bob cannot expect the prime factorization of
his number n to remain hidden for more than §
years, and once it is out, Alice can fool the
judge {but this problem can be avoided without
a8 statute of limitations by having Alice sign
an additional message below).

2. It is unreasonadle to demand that Alice and Bob
keep their correspondence for longer than sonme
fixed length of time (5 years).

We assume that each of the parties is aware of this
limitation and do not mentionm it further.

THE PROTOCOL: BOB FLIPS COINS T0 ALICE
I.  BOB SELECTS n [footnote 3]:

[footnote 2]: By abuse of nmotatiom, ws assign to x
a dual use as variable (in the equation a = x2 mod
n) and as constant (a particular solution of a = x2
mod n).

[footnote 3]: A TRUSTED INTERMEDIARY may be used %o
select n. He must choose n at random according to
the rules given Bob. If the intermediary is trusted
by the entire world (trusted to select n according
to the rules and not to give away the primes), then
everyone can use n to flip coins to everyone else.
It is not necessary for either Bob or Alice to know
the prime factors of n in order for Bod to flip
coins to Alice. 1In fact, Alice = or whoever is re-
ceiving the flipped coin - should NOT know the prime
factorization of n, else she can chesat Bab.

135
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Bob selects at random two distinct {exactly) 80-
digit primes 1, p2, both congruent to 3 med 4;
i.e., he repeatedly selacts 80-digit numbers a% ran-
dom and tests each until he obtains two primes both
congruent to 3 mod 4 [footnote 4!, He multiplies
these together to get n = pl*p2.

B => A: Bob sends Alice "My ccin-flipping number is
n. Its publication date is May 27, 1980. -

signed Bob."
II. ALICE TESTS n:

If Alice trusts that n is a 160-digit product of two
primes, both congruent to 3 mod 4, then this part of
the protocol may be skipped. Otherwise, Alice
checks that n has +the following two properties
[footnote 5]

a) Alice checks that n is a 160-digit number and
that n = 1 mod 4. The latter implies that n is odd
and {=1/n) = +1,

b) Alice checks that far SOM
surely a y such that x< = ¥
(y/n), as follows:

B => A: Bod selects a0 (distinet) numbers
X1,...,280 chosen at random from 2n* (it is
in HIS interest to select these numbers at
random). He sends x12 mod n,...,x802 mod n
to Alice [footnmote 6].

x there is almost
mod n and (x/n) ¥

B => B: Alice sends Bob a sequence of 80 randomly
chosen bits, %1,...,b80, where each bi = +1
or =1,

B => A: Let xi2 =« vi2 mod =n where (xi/n) = +1,

(yi/n) = =1. (By Theorem 1, two such roots
must exist for every i.) Bob sends Alice a
prarticular sequence of 80 numbers: for each
i, from i = 1 to i = 80, he sends Alice xi
1f bi = +1, or yi if bi = -1,

This convinces Alice that condition 1 of Theorem 1
holds (it fails with probability 1/280 ¢
1/Avogadro's number) [footnote 7).

From this point on, the number n has been
tested and Alice does not have to retest it.

(footnote 4]: PRIMALITY TEST Alice and Bob can test
if an 80-digit number is prime using one of the ef-

ficient algorithms for primality of Gary Miller
M'76|, Strassen and Solovay [SS'77], or Rabin
R'80]. Approximately half of all the 80~digit

primes are congruent to 3 mod 4.

[footnote 5]: The two properties do not prove thrat
n is a product of two distinct primes doth congruent
to 3 mod 4 (it might for example ®e a product of
three distinct primes, two of thenm congruent to 3
mod 4), but they suffice to prove that (with ex-
tremely nigh probability) the pre tocol is
trustworthy.

[footnote 6]: Alice does not have to check if the
aumbers :1e receives are distinct or quadratic resi-
dues mod n relatively prime %o n. This check is au-
tomatically part of the following 3 => A message.

[footnote 7]; Alice has NOT proved that n is a pro-
duct of just two primes - she has just "proved” that
n satisfies statement 1 of Theorem 1, which is all
she needs to know. It will actually be in Bob’'s in-
terest to make n a product of just two primes to
prevent Alice from factoring a within the S-year
statute of limitations.
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ITII. BOB FLIPS COINS TO ALICE:

For this protocol te held in court, nessages
exchanged in this vpart {as in I but not II) are
signed before delivery. Alice checks that the pub-
lication date is within an acceptable tolerance,
e.@., within 1 year of the current date, else
aborts. If she accepte the publication date, then
Bob and Alice can flip 80 (or any number of) coins
as followa:

A4 => B: Alice selects 80 numbers x1,...,x80 in Zn*
st random. She sends Bod "n, publication
date of n, x12 mod Oyeee, X80 mod n =

signed Alice.”

The purpose in sending n is for the court to know
which of perhaps several transactions this is.

This is a delicate point in the negotiations
for Alice. The delicacy has to do with the publica-
tion date. If Bob does not respond to the above
measage, he could nevertheless take Alice to court,
saying he sent her his guess (+ 1) and she didn't
pursue the matter (he claims she probably lost the
coin-toss). With the judge's protocol given here,
the court would then enforce completion of the pro-
tocol. If Bob does not wish to continue, it would
be a courtesy for him to tell her so in a signed
message. The protocol could then stop here. It can
stop here anyway provided Alice understands that she
may be forced to continue the protocol in court. If
this is inconvenient, she should take Bob to court
and get a letter from the judge terminating this
protocol.

At tnis point, Bob should check that Alice sent
him the correct n and the correct publication date
(if not, he should ask her to stop fooling around).
Bob cannot tell if (xi/mn) = +1 or -1 since by 3 of
Theorem 1, xi2 mod n has as many roots with (xi/n) =
+1 as it has-with (xi/n) = -1 (this is true aven if
Bob did not choose n to be a product of twe primes).

B => A: Bob sends Alice "n, x12 mod n,..., x802 mod

n, b4,...,b80 - signed Bob™ [footnote 8].

Alice should check that n, x12 mod n,..., 2802
mod n have not been altered (if s¢o, she asks Bob to
stop fooling around). Alice now determines her
sequence of random bits: her ith random bit is ri =
+1 if Bob guessed right about xi; -1 if he guessed
wrong.

At this point in the protocol, Alice knows what
Bob flipped to her; Bob has absolutely no idea.
¥henever she wants to prove to Bob what sequence
ri,...,780 of random bits was flipped to her, she
sends the confirmation message:

L => B: Alice sends x1,...,x80 to Bob.

This message need not be signed, bdbut in that case
Bob must make sure his factorization of n will not
be given away during the next 5 years. If Alice DOES
sign this message, then the statute of limitations
need NOT apply.

To guard against Alice cheating, Bob computes
x12 mod n,..., x802 mod n and compares them with
what Alice sent him: if they do not agree, then
Alice cheated. If they do agree, he computes
(x1/n),...,(x8C/n) and thereby determices ri,...,r80

[footnote 8]: The extra information, i.e., n, x12
mod O,..., xBO2 mod n, enables the courts tc know
which of perhaps several transactions this is.
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[footnote 91.

If Bob should need to flip more ceins to Alice,
the *wo c¢an continue to use the same n, skipping
parts I and II of the above protocol.

END CF PROTOCCL

THE JUDGE'S PROTOCOL

An iron-clad judge's protocol is one that can be
programmed and thereby save needless expense. In
what follows, the judge should be viewed as a com=-
puter.

In case of a dispute, the judge proceeds as

follows:

1. Subpoena all signed wmessages that have been
exchanged. Check that the statute of limitations
has nct been exceeded (5 years past the publication
date on the number n). If so, throw the case out of
court.

2. If one of the participants, say Alice, produced
a signed-by-Bob message that refers back to a previ-
ously signed-by-Alice message (she sent Bob), then
Bob must produce the message he received or be found
guilty of cheating.

3. Check that n is a 160-digit number that passes
the test in II [footnote 10]. If not, Bob is found
guilty of cheating.

4, If no messages have provably been exchanged in
III, i.e., neither party has produced a message of
III signed by the other, then give each of the par-
ticipants a dated letter asserting that this proto-
col is declared terminated. (even if Alice sent x1
mod n to Bob, who decided not to pursue the matter
and threw out her signed message). Otherwise,
enforce completion of the protocel (if it has not
already been completed) [footnote 11].

5. Check that the x12 mod n,... in the signed-by-
Alice message received by Bod is the square mod n of
the numbers x1,... in the signed-by-Alice message
later received by 3Bob. If not, Alice is found
guilty of cheating.

6. Determine the sequence of random bits that Bob
flipped to Alice. Give each of the participants a
(dated) paper asserting the court's findings (this
is necessary because the case cannot be brought %o

[footnote 9]: Alice cannot cheat since, first,
(xi/n) = (-xi/n) so Alice cannot change the Jacobi
symbol of xi by changing the sign of xi; and second,
Alice cannot compute yi such that yi # xi mod n and
7i2 = xi2 mod n (under the assumption that she can-
not factor n) since ged (xi + yi) = p! or p2.
[footnote 10]: The judge might, instead of testing
n, subpoena the prime factors of n, check there are
just two 80-digit primes congruent to 3 mod 4, else
find Bob guilty of cheating. This requires, howev-
er, that the judge be trusted not to divulge the
primes, which Bob might be using in other transac-
tions.

[footnote 11}: This is necessary to guard against
the possibility that Alice sent x'¢ mod n,... to
Bob, that Bob responded with +1, =-t,... and that
Alice decided she did not like the result (she might
argue that Bob never sent her the required bits).
Or perhaps Alice liked the result, responded to Bob
by sending him x1,... and Bob decided he did not
like the result (he might argue that Alice never
sent him x1,...)



-15-

court again once <the statute of limitations is
exceeded - not to mention the waste of duplicated
proceedings).

END OF PROTOCOL
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