
CS 355: Topics in Cryptography Spring 2019

Lecture 5: Proofs of Knowledge, Schnorr’s protocol, NIZK

Dima Kogan

Recap

Last lecture we saw that languages in NP have zero knowledge proofs (if commitments exist). We’ll start
by a slightly differet view of NP. We say that a relation R⊆X ×Y is an NP relation if:

• It is polynomially bounded: there exists a polynomial p, such that |x| ≤ p(|y |) for every (x, y) ∈R.

• There exists a deterministic polynomial time algorithm V such that (x, y) ∈R ⇐⇒ V (x, y) = 1.

The corresponding language LR = {y : (x, y) ∈R} is called an NP language. A zero knowledge proof
system for an NP relation R is a pair of interactive and randomized algorithms P , V , with the following
properties:

• Completeness: y ∈LR ⇒ Pr
[〈P,V 〉(y) = 1

]≥ 2/3.

• Soundness: y ∉LR ⇒∀P∗ : Pr
[〈P∗,V 〉(y) = 1

]≤ 1/3.

• Zero knowledge: ∀V ∗∃ efficient S such that∀y ∈L :
{
Sim(y)

}≈c
{
ViewV ∗(〈P,V ∗〉(y)

}
.

The third property guarantees that the verifier learns nothing from the interaction, except that y ∈L,
since there exists an efficient simulator that can generate transcripts that are indistinguishable from the
real ones.

1 Proofs of Knowledge

Note that the soundness requirement assures the verifier that if it accepts some statement y , then with
high probability y ∈LR. Sometimes this assurance is not strong enough. For example, a login protocol
in which the prover merely convinces the verifier that there exists a secret key corresponding to the
verification key held by the verifier would not be intuitively secure. We would like the prover to convince
the verifier that it actually knows the secret key.

Definition 1.1. An interactive proof system P ,V for an NP relation R is a proof of knowledge with
knowledge error ε, if there exists an algorithm E , called an extractor, that runs in expected polynomial
time1, and such that for every y and every prover P∗:

Pr
[

(x, y) ∈R : x ← EP∗
(y)

]
≥ Pr

[〈P∗,V 〉(y) = 1
]−ε .

The notationEP∗
means thatE is an algorithm that gets black-box access to the algorithm P∗, including

the power to rewind the prover. The probability ε is called the knowledge error of the proof system. Note
that if a proof system has knowledge error ε, it means that it has soundness error of at most ε.

1An algorithm is said to run in expected polynomial time if there exists a polynomial p such that for every x, the expected running
time of the algorithm on x is at most p(|x|), where the expectation is taken over the random choices made by the algorithm.

2 Schnorr’s Protocol: Proof of Knowledge of Discrete Log

Suppose that a prover wants to prove it knows the discrete logarithm x of some group element h = g x ∈G,
where G is a group of prime order q . Here R = {

(x,h) ∈Zq ×G : g x = h
}
, where the group G and the

generator g are public parameters.

P(x,h = g x) V(h = g x)

r ←R Zq

u ← g r

u

c ←R Zq

c

z ← r + cx

z

g z ?= u ·hc

Completeness: if z = r + cx, then g z = g r+cx = g r · (g x
)c = u ·hc .

Honest-verifier zero knowledge (HVZK): for every g ,h ∈ G, the output of the simulator needs to be
indistinguishable from the distribution of the transcripts

{ViewV (P (x,h) ↔V (h))} = {
(g r ,c,r + cx) : r,c ←R Zq

}= {
(u,c, z) : c, z ←R Zq , g z = u ·hc}

We construct a simulator that output the same distribution by running the protocol “in reverse”:

S(h) :

z ←R Zq

c ←R Zq

u ← g z

hc

output (u,c, z)

Since z is chosen at random, then the resulting u is random, and the output is distributed identically
as the real transcript.

Why does this proof not give zero knowledge, but only HVZK? If some dishonest verifier V ∗ chooses c
adaptively (and not uniformly at random), then the above simulation is no longer indistinguishable from
the real transcript.

Proof of knowledge: Let P∗ be a (possibly malicious) prover that convinces the honest verifier with
probability δ. For simplicity, we give here the proof only for the case δ = 1. (For the general case, see
Boneh-Shoup Chapter 19.1.) We construct the extractor as follows:

EP∗
(h) :

1 : Run the prover P∗ to obtain an initial message u.

2 : Send a random challenge c1 ←R Zq to P∗ and get a response z1.

3 : Rewind the prover P∗ to its state after the first message.

4 : Send it another random challenge c2 ←R Zq and get a response z2.

5 : Compute and output x = z1 − z2

c1 − c2
∈Zq .

Since P∗ succeeds with probability 1, we know that

g z1 = u ·hc1 and g z2 = u ·hc2 .

Therefore
g z1

hc1
= g z2

hc2
⇒ g z1−z2 = hc1−c2 ⇒ h = g

z1−z2
c1−c2 ⇒ x = z1 − z2

c1 − c2
.

Note that the extraction fails if c1 = c2, which happens with probability 1/q . Therefore, the knowledge
error here is ε= 1/q .

3 Non-Interactive Zero Knowledge

Can we construct a zero-knowledge proof system in which the proof is a single message from the prover to
the verifier? The zero-knowledge definition immediately implies that a simulator can simulate a message
indistinguishable from the real proof for every y ∈L, whereas by soundness, for every y ∉L the proof
Sim(y) must be rejected by the verifier. Therefore V (Sim(y)) = 1 ⇐⇒ y ∈ L, and we get an efficient
algorithm to decide L. (In complexity-theoretic terms, we say that L ∈ BPP.) The conclusion is that
one-round proofs only exist in a trivial case.

Intuitively, it looks like a dead end, since the simulator and the real prover stand on equal grounds, so
we cannot get something non-trivial from the prover. To circumvent this, we move to the random oracle
model, in which:

• The prover and the verifier both have access to a hash function modeled as a random oracle.

• The simulator can program the random oracle. The adversary, that tries to distinguish between
the real transcript and the simulated one, can make oracle queries, but the simulator chooses the
responses as well.

Note that although the simulator can program the random oracle any way it wants, the values it
chooses for the responses must be indistinguishable from random, since otherwise the adversary could
distinguish just by making oracle queries.

3.1 The Fiat-Shamir Heuristic

The Fiat-Shamir heuristic is a technique to convert an interactive protocol to a non-interactive proof in
the random oracle model. The key idea is that we replace the verifier’s random challenge with the value of
a hash function (which we model as a random oracle) on the prover’s first message and the input. For
example, for the Schnorr identification protocol, we obtain the following:

P(g , x,h = g x) :

r ←R Zq

u ← g r

c ← H(g ,h,u)

z ← r + cx

output π= (u,c, z)

V(g ,h = g x ,π= (u,c, z)) :

c
?= H(g ,h,u)

g z ?= u ·hc

S(g ,h) :

z ←R Zq

c ←R Zq

u ← g z

hc

Program H(g ,h,u) to be c

output (u,c, z)

Security:

• Completeness: same as in the interactive Schnorr protocol.

• Zero knowledge: the simulator proceeds as in the interactive protocol, only that now, the challenge
is not a message from the verifier, but rather a value of the hash function. The simulator programs
the random oracle to have the value c it has chosen at the point (g ,h,u) (see figure above).

• Knowledge: Similar to the original extractor, only now, when rewinding the prover, the extractor
changes the value of the random oracle to obtain two different transcripts with the same commit-
ment, from which it can extract the discrete log x of h.

3.2 Signatures

If we bind the NIZK proof to a specific message by adding the message as an additional input to the hash
function (random oracle)

c ←R H(g ,h,u,m) ,

we obtain a signature scheme, in which sk = (x) and pk = (h = g x). We can then prove the security of
the resulting signature scheme (existenital unforgeability) in the random oracle model, by showing that
we can use an adversary that forges a signature to construct another adversary that breaks Schnorr’s
interactive protocol.

	Proofs of Knowledge
	Schnorr's Protocol: Proof of Knowledge of Discrete Log
	Non-Interactive Zero Knowledge
	The Fiat-Shamir Heuristic
	Signatures

