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1. Perfect Secrecy

Claude Shannon introduced an entropy model for information, and applied it to
secrecy in communications. It supposes a source of information, Alice, which chooses
among a set of possible messages. There is associated with this choice a likelihood
that Alice would chose a particular message. Symbols are then sent across a channel
to Bob. These symbols should refine Bob’s likelihood function, emphasizing the
likelihood of Alice’s chosen message. Alice and Bob share a secret key, but this
key is not shared with the eavesdropper Eve. Eve sees the symbols on the channel,
and understands as well the likelihood by which Alice chooses messages. However,
because Eve does not share the secret key, Eve should find no use for these symbols.
Her likelihood function should not be refined.

Alice’s likelihood is represented as a probability distribution over a message space.
The messages space M is assumed finite. A probability distribution P (M) is a map
from M to [0, 1], satisfying the axioms of a probability distribution; but might be
better to think of P (M) as a map from events in M , that is, subsets of M , to
[0, 1]. Events are things we can learn about the message, such as “the event that the
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message contains a vowel”. Generally, for every message m, the event “the message
is m” is an admissible event, and so there is no difference between P : M → [0, 1]
and P : Pwr(M)→ [0, 1].

Complete uncertainty on Alice’s choice corresponds to the uniform distribution:
P (M = m) = 1/|M |. In this case, Bob will have no preferred message that he can
act on in advance of any symbols. Complete certainty corresponds to,

P (M = m) =

{
1 if m = m∗

0 else

In this case, each time Alice picks a message, that message is m∗, and it is even
unnecessary that she sends symbols. Bob can act in advance on the knowledge that
when Alice chooses, she will choose m∗.

If the symbols placed on the channel are from the space C, the ciphertext, we
wish that Bob learns from this symbol. Consequently the probability is updated.
However, as Eve learns nothing, the probability on M conditioned on C should be
unchanged. This is the Shannon definition of Perfect Secrecy:

Definition 1.1. An encryption scheme as Perfect Secrecy if for every probability
distribution P (M) and for every c ∈ C, the probability distribution P (M | c) is the
same as the a priori likelihood distribution P (M).

1.1. A Perfectly Secret Cipher. The Vernam Cipher, or One Time Pad, is an
example of a perfectly secret cipher. It works on a message space of bits, and the
key is a stream of bits matching the length of the message. We discuss the case of a
one bit message.

Alice and Bob flip a fair coin (or a coin of bias β). The result k ∈ {0, 1} is their
secret key. Given the message m ∈ {0, 1}, Alice forms ciphertext c = k ⊕m. Bob
receives c and recovers m by,

c⊕ k = m⊕ k ⊕ k = m⊕ 0 = m.

Theorem 1.1. The Vernam Cipher has Prefect Secrecy if and only if β = 1/2.

Proof. Because β = 1/2, half of the 0 messages end up transmitting a 0, and half of
the 1 messages end up transmitting a 0; so half of the transmissions are 0. Leaving
that the other half of the transmissions are a 1.

P (C = 0) = P (C = 0 |M = 0)P (M = 0) + P (C = 0 |M = 1)P (M = 1)

= 1/2 (P (M = 0) + P (M = 1)) = 1/2

And P (C = 1) = 1/2 likewise. Ciphertext c obtained from message m exactly when
k = c⊕m,

P (C = c |M = m) = P (k = c⊕m) = 1/2.
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Figure 1. Vernam Cipher.

Using Bayes Theorem to put these facts together,

P (M = m | C = c) = P (C = c |M = m)P (M = m)/P (C = c)

= (1/2)P (M = m)/(1/2)

= P (M = m)

satisfying the definition of Perfect Secrecy.
�

Hence, to Eve, without access to k, the likelihood of a message after observation of
C is the same as without any observation. The channel reveals nothing because Eve’s
beliefs can ignore it entirely without loss. However, Bob can update his probability
to achieve certainty about which message was chosen by Alice.

1.2. Odds Ratio and Bias. Assume, through some fault of key generation that
the key coin is not fair, β 6= 1/2. Then the system does not have perfect secrecy. In
the case of a probability distribution that places weight 1/2 on each of two elements
in M , the ciphertext is a clear hint about the message chosen. Into the encryption
box, both a 0 or a 1 are equally likely, but out of the encryption box, it is more likely
a 0 if the input were a 0, and more likely a 1 if the input were a 1.

We calculate that P (m = c) = β, in this case. We can do this directly from the
equation k = m⊕ c.

However, what of perfect secrecy in the case were the message distribution is not
uniform. We can assume w.l.o.g. β ≥ 1/2 and δ = P (M = 0) ≥ P (M = 1). What
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should Eve do? Let’s assume that Eve chooses the most likely input to the encryption
box given the observed output. We express this as an odds ratio:

P (M = 0 | C = c)/P (M = 1 | C = c)

Intuitively, if c = 0, then it is more likely that m = 0. M = 0 is already the a priori
guess, and a biased coin only adds likelihood to this guess if c = 0.

So:

P (M = 1 | C = 1)

P (M = 0 | C = 1)
=

P (C = 1 |M = 1)P (M = 1)/P (C = 1)

P (C = 1 |M = 0)P (M = 0)/P (C = 1)

=
P (C = 1 |M = 1)

P (C = 1 |M = 0)

P (M = 1)

P (M = 0)

=
β

1− β
1− δ
δ

Eve will guess 1 if,

β

1− β
1− δ
δ

> 1,

which reduces to β > δ.
Hence Eve continues to guess the more a priori outcome and achieves success

probability δ = P (M = 0) unless the coin bias β rises about δ, in which case Eve
guesses that m is c and achieves success probability β.

1.3. Conditions for Perfect Secrecy. A few necessary conditions for perfect se-
crecy are immediate. It must be that the key space is at least the size the space
of ciphertext messages. If not, then decrypting a given ciphertext by each key will
give the space of possible messages, which must omit some possible messages. Any
message missing from the collection of possible decipherings will have a posteri proba-
bility 0, and for the purposes of the proof, a distribution on messages can be assumed
with a priori probability non-zero for this message.

The space of ciphertext messages must be at least as large as the space of messages,
else there will be some two messages encrypting to the same ciphertext, and the
requirement that decryption be the inverse of encrypting cannot be achieve.

Shannon’s theorem for perfect secrecy assumes equal sizes for the key space, mes-
sage space, and ciphertext space and gives two conditions necessary and sufficient
for perfect secrecy.

(1) The choice if k from K is made uniformly at random; and
(2) For each m in M and c in C there is a unique k in K such that c = Ek(m).

One can check that these theorem holds for the Vernam Cipher described above.
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1.4. Multibit Ciphers. The exclusive-or over a 0-1 space can be replaced with
a randomly chosen shift in the space of modular integers. A possibility is to use
the letters A through Z as encodings of 0 through 25 mod 26. Then a rotational
shift gives a perfectly secret cipher. However, if the same shift is used for multiple
messages, then the cipher is not perfect. A constructive proof of non-secrecy is the
use of frequency analysis to recover the key, and break the cipher. The a priori
distribution of messages refines the guess of the key with each sample encryption.

If each shift were chosen independently, uniformly at random for each character
in a text, then the requirements of perfect secrecy are satisfied. The reuse of a key
breaks perfect secrecy.

However, shift ciphers do not have completely random choices for keys for each
column. The Vigenere cipher improves a simple shift cipher by having several groups
of columns which independently chosen shifts. However, this is not sufficient, let
alone that the key is generally not drawn at random, but for convenience is drawn
from a more limited space of words in, say, a dictionary. There are 170,000 words in
the dictionary, and 264 = 456, 976. Hence the key space is notably sparse even for a
4 letter message.

2. Adversarial Indistinguishability

Shannon introduced encryption in the context of entropy and information. The
model gives absolute answers. It does not depend on any assumptions about the
attacker. The encryption keeps the message secret because the channel symbols
support equally any hypothesis about which message is more likely, in the presence
of that symbol. However, the price is that the number of bits in a key must be a
large as the number of bits in the message. This is not practical.

Computational complexity allows for the possibility of a practical scheme that is
effectively secure. A claim can be made that, although possible, it is not within the
capacity of a practical computation to extract information from the ciphertext.

To help introduce these notions we rephrase perfect security with an adversary,
that first will have unbounded power but then we will ask that the adversary fit
within computational bounds.

Adversarial Indistinguishability is comprised of an encryption system,

Π = (Gen,Enc,Dec),

and an Adversary A, and a game where:

(1) The adversary chooses two message, m0 and m1 from the message space.
(2) A key k is generated at random by Gen, and a fair coin chooses b ∈ {0, 1}.
(3) The adversary A is presented Enc(k,mb)
(4) The adversary returns b′.
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The value of PrivKeav
A,Π is (b == b′).

Definition 2.1. An encryption scheme Π has Perfect Adversarial Indistinguishability
if, for any adversary A,

P (PrivKeav
A,Π = 1) = 1/2,

where the probability space includes the distribution of k by Gen, the coin flip b, the
choice of m0 and m1 by A, and any randomness in the functions A and Enc.

2.1. Perfect Indistinguishability.

Theorem 2.1. An encryption scheme has Perfect Adversarial Indistinguishability if
and only if it has Perfect Secrecy.

Proof. Perfect Secrecy =⇒ Perfect Adversarial Indistiguishability.

Assume the systems does not have perfect adversarial indistinguishability. Then by
the definition of perfect adversarial indistiguishability, there are two messages m0

and m1 for which some adversary A has an advantage. What the A sees is a sample
of a random variable,

X0 : K × Ω → C,
k, ω 7→ Ek,ω(m0)

or of X1, defined similarly. Here, k is a key drawn from the keyspace K and ω is the
randomness used in the encryption. Note that,

P(Xi) = P(C |M = mi),

for i = 0, 1, as it is the measure in the space K × Ω of those keys and randomness
that map mi to any particular c ∈ C. Since there is the possibility of an adversary
with an advantage, it must be that these distributions differ, and hence they must
differ for a particular c∗ ∈ C,

P(C = c∗ |M = m0) 6= P(C = c∗ |M = m1),

Perfect secrecy states that a certain equality holds for all probability distributions
on M , so choose the distribution where m0 and m1 both have probability 1/2, and
no other message is possible. Applications of Baye’s law then gives,

P(M = m0 |C = c∗) 6= P(M = m1 |C = c∗)

because in a ratio comparing the conditional probabilities, the P (c∗) and P (mi) can-
cel. They conditional probabilities then cannot both be equal to 1/2, contradicting
the requirement of perfect secrecy.

�
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Proof. Perfect Adversarial Indistiguishability =⇒ Perfect Secrecy

Assume that the scheme does not have Perfect Secrecy. An equivalent definition for
Perfect Secrecy is that ∀m0,m1 ∈ M and any c ∈ C which has non-zero probability
under the message distribution P(M),

P(C = c |M = m0) = P(C = c |M = m1)

because for any m and m′ of non-zero probability, the perfect secrecy condition,

P(M = m | C = c) = P(M = m)

entails,
P(c | m) = P(m | c)P(c) /P(m) = P(c) = P(c | m′).

Therefore since the scheme is assumed not perfectly secret, there exists m0,m1 and
c∗ such that

P(C = c∗ |M = m0) 6= P(C = c∗ |M = m1).

Construct A as follows. A offers messages m0 and m1. On receiving c, if c 6= c∗, A
answers a random bit b′. If c = c∗, A answers 0. Note,

P(C = c∗) = P(C = c∗ | b = 0)P(b = 0) + P(C = c∗ | b = 1)P(b = 1)

= 1/2 (P(C = c∗ | b = 0) + P(C = c∗ | b = 1))

= 1/2 (P(C = c∗ |M = m0) + P(C = c∗ |M = m1))

6= P(C = c∗ |M = m0)

= P(C = c∗ | b = 0).

As a consequence,

P(PrivKeav
A,Π = 1 | C = c∗) = P(b = 0 | C = c∗)

= P(C = c∗ | b = 0)P(b = 0) /P(C = c∗)

6= P(b = 0)

= 1/2

The advantage when c is not c∗ is 1/2, but not 1/2 when c is c∗. Averaging over the
cases, the average is not 1/2. Hence the scheme is not perfect adversary indistin-
guishable.

�

2.2. Practical Indistinguishability. Having rephrased perfect secrecy in the model
of adversarial indistinguishability, we consider now only practical adversaries, and
allow them a negligible possibility of success. A practical adversary is modeled as a
probabilistic polynomial-time bounded algorithm. Brute force attacks are exponen-
tial in key size, and if we have fewer keys than plaintexts, are bound to ultimately
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succeed. But a sufficient large key will keep these attacks only theoretically success-
ful. There will not be enough computing power to carry out the attack in time to
act upon the information.

As an aside, in physical security, a similar approach is used. Safes are not consid-
ered unbreakable, but are gauged by the time required to break them. For instance,
thicker steel will take more time to cut. Note however, this is an absolute time;
whereas we are invoking the models of algorithm complexity, so our time is a func-
tion, and by selection of key size the estimated time to break can be increased at
will.

The possibility of of key compromise, even though the probability of that is ex-
ponentially remote, means that there is intact a small advantage to the attacker.
It cannot be denied. However, the practical definition of indistinguishability looses
as little ground as possible to this reality by allowing only a negligible advantage,
defined as an advantage over guessing of 1/f(n), where f(n) is any polynomial func-
tion. This is almost saying exponentially small, but not quite. It is a bit larger:
smaller than the inverse of any polynomial, regardless of the polynomial’s degree.

Hence the definition:

Definition 2.2. An encryption scheme Π has Adversarial Indistinguishability if, for
any probabilistic polynomial-time adversary A there is a negligible function g(n)
such tat for all n,

P (PrivKeav
A,Π(n) = 1) ≤ 1/2 + g(n).

where the probability space includes the distribution of k by Gen, the coin flip b, the
choice of m0 and m1 by A, and any randomness in the functions A and Enc.

A possible implementation of such an encryption is by analogy to the Vernum
cipher, except that instead of using a truly random pad, a pseudorandom pad is used.
A pseudorandom pad is a stream, a function of a random seed, that appears random.
For instance, the next bit is unpredictable even when the adversary examines the
stream up to that point, except for the seed.

The existence of good ciphers by this definition, then, becomes the question of the
existence of such pseudorandom generators.


