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1. An Hermitian product on a complex vector space V' is an assignment of
a complex number (z,y) to each pair of vectors x,y, which has the following
properties for all vectors z,y, z and for all numbers «, £:

(z,y) = (y,z),
(z, 0y + B2) = a(z,y) + B(=, 2),
(z,2) >0,

with equality only for = = 0.

Ezample. (x,y) = ZT1y1 + ...+ Tpyn. This example is called the standard
Hermatian product on C™.

It follows from the first two properties that (ax,y) = @(x,y). They say
that (x,y) is linear with respect to the second argument and anti-linear with
respect to the first one.

An Hermitian transposition is the combination of two operations: ordi-
nary transposition and complex conjugation. It is denoted by star, A* = ZT,
where the bar is the complex conjugation. So the standard Hermitian prod-
uct can we written as (z,y) = z*y.

Two vectors are called orthogonal if (z,y) = 0. Vectors orthogonal to
some given set of vectors form a subspace. If V' is a subspace of V' then
its orthogonal complement consists of all vectors orthogonal to each vector
of V. Two subspaces are called orthogonal if each vector of one of them is
orthogonal to each vector of another one.

A square matrix A is called Hermitian if

A* = A.



A real matrix is Hermitian if and only if it is symmetric. Hermitian matrices
are characterized by the property

(Az,y) = (z,Ay), forall z,y in V, (1)

where (., .) is the standard Hermitian product. Indeed, A* = A is equivalent

to
(Az,y) = (Ax)"y = 2" Ay = (x, Ay), forall z,y in V.

A square matrix U is called unitary if
UU =1,

which is the same as U* = U~!. In other words, a unitary matrix is such
that its columns are orthonormal. Unitary matrices are characterized by the
property
(Uz,Uy) = (x,y) forall z,y in V. (2)
Indeed,
(Uz,Uy) = (Ux)"Uy =x"U"Uy = z*y = (x,y).

A real matrix is unitary if and only if it is orthogonal.

We recall that each n x n matrix defines a linear operator on C" acting
by the rule L(z) = Az. And conversely, each linear operator in a finite-
dimensional vector space is described by a matrix. This correspodence be-
tween matrices and linear operators depends on the choice of a basis.

2. Spectral theorem for Hermitian matrices. For an Hermitian matriz:

a) all eigenvalues are real,

b) eigenvectors corresponding to distinct eigenvalues are orthogonal,

c) there exists an orthogonal basis of the whole space, consisting of eigen-
vectors.

Thus all Hermitian matrices are diagonalizable. Moreover, for every Her-
mitian matrix A, there exists a unitary matrix U such that

AU = UA,

where A is a real diagonal matrix. The diagonal entries of A are the eigen-
values of A, and columns of U are eigenvectors of A.

Proof of Theorem 2. a). Let A be an eigenvalue, then
Ar =Xz, x#0



for some vector x. Multiply both sides on z:
(Az,z) = (\z,7) = M, 7).
Property (1) shows that (Ax,x) equals
(z, Az) = (xz,\x) = Az, 7).

As (x,z) # 0, we conclude that A = ), that is X is real. This proves a).
Proof of b). Suppose we have two distinct eigenvalues A # p. Then

Ar = v, Ay =y, (3)

where z, y are eigenvectors. Multiply the first equation on y, use (1) and the
fact that A is real which was just established.

AMz,y) = (A\z,y) = (Az,y) = (v, Ay) = (z, py) = p(z, ).

As X # p, we conclude that (z,y) = 0, which proves b).

Proof of ¢). Let \; be an eigenvalue, and z; an eigenvector corresponding
to A; (every square matrix has an eigenvalue and an eigenvector). Let V; be
the set of all vectors orthogonal to x;. Then A maps V; into itself: for every
x € Vi we also have Ax € V;. Indeed, x € V| means that (z1,x) = 0, then
we have using (1):

(1, Ax) = (Azq,2) = M (21, 2) =0,

so z € V1. Now the linear operator L(z) = Az when restricted to V; is also
Hermitian, and it has an eigenvalue A\, and an eigenvector x5 € Vi. By
definition of V, x5 is orthogonal to x;. Let V5 be the orthogonal complement
of the span of x1, x5. Then A also maps V5 into itself, as before. Continuing
this way, we find a sequence Ay, xy and subspaces V}, containing xj such that
Vi is orthogonal to xq,...,xr_1. The sequence must terminate on the n-th
step because dim V; = n — k: on every step dimension decreases by 1. This
completes the proof.

3. Spectral theorem for unitary matrices. For a unitary matriz:

a) all eigenvalues have absolute value 1.

b) eigenvectors corresponding to distinct eigenvalues are orthogonal,

c) there is an orthogonal basis of the whole space, consisting of eigenvec-
tors.



Thus unitary matrices are diagonalizable. Moreover, for each unitary
matrix A there exists a unitary matrix U such that

AU =UA

where U is a diagonal matrix whose diagonal entries have absolute value 1.
The columns of U are eigenvectors of A.

Proof of Theorem 2. a) Let A be an eigenvalue. Then
Ax =z, x#N0.
Using (2) we obtain
(z,2) = (Az, Az) = M\(z, 2).

As (z,1) # 0, we conclude that A\ = |A\|> = 1, which proves a).
Proof of b). Begin with (2), (3), and obtain

(ZE,y) = (Al‘,Ay) = XM(%x)-

As |A] = 1, we conclude that A = A™!, so the multiple in the RHS is p/\ # 1
by our assumption that u # A. So (z,y) = 0, which proves b).

Proof of ¢). Let \; be an eigenvalue, and z; an eigenvector corresponding
to this eigenvalue, Let V; be the set of all vectors orthogonal to x;. As in
the proof in section 2, we show that = € V; implies that Ax € V. Indeed

(Az,x1) = (2, A'xy) = (:U,A’lxl) = )\’1(3:,951) =0,

where we used (2) which is equivalent to A* = A~'. The proof is now
completed in exactly the same way as in the previous section.

4. Exponentials of Hermitian matrices. Let A be an Hermitian matriz.
Then e is unitary, and conversely, every unitary matriz has the form e
for some Hermitian matriz A.

Let B be a real matrix, and A = ¢B. Then A is Hermitian if and only if
B is skew symmetric (BT = —B):

A" = (—i)BT =iB = A.

So we obtain a



Corollary: For a real matriz B, P is orthogonal if and only if B is skew-
symmetric.

Proof. Let U = ¢4, where A is Hermitian. Then
UU* — eiAe—iA* — 6iA€—iA — 7

Conversely, let U be a unitary matrix. Then, by the Spectral Theorem
for unitary matrices (section 3), there is another unitary matrix B such that
U= BAB™!, and A = diag (\1,...,\,). As all [\;] = 1, we write them as
i = €% where 6, are real numbers. Then set

A= Bdiag (0y,...,0,)B~' = BA\B™".
Then A is Hermitian:
A* = (B Y)*AyB* = BA\B™' = A,
and evidently exp(iAd) = U.

5. These three theorems can be generalized to infinite-dimensional spaces.
Unlike the Jordan form theorem. Omne can say that we understand well
Hermitian and unitary operators, but not arbitrary linear operators.

These three theorems and their infinite-dimensional generalizations make
the mathematical basis of the most fundamental theory about the real world
that we possess, namely quantum mechanics.

6. Normal operators. According to part c) of our spectral theorems, if A
is either Hermitian or unitary then there is an orthonormal basis consisting
of eigenvectors. Let us describe all operators with this property. If there is
an orthonormal basis of eigenvectors of A then

A=UANU' = UAU", (4)

where columns of U are eigenvectors of our basis, and the second equation
holds because U is unitary, U~! = U*. From (4) we conclude that

A* =UNU*=UNU" (5)

Notice that all pairs of diagonal matrices commute AjAs = AyAq, and we
conclude from (4) and (5) that

AA* = A"A.



Operators and matrices with this property are called normal. We just proved
that existence of a basis of eigenvectors implies normality. Now we prove the
converse.

For each normal operator A, there exists an orthonormal basis of the space
consisting of eirgenvectors.

The proof is similar to the proof of ¢) for Hermitian and unitary operators.
Let A\; be some eigenvalue, and V; the corresponding eigenspace. By
definition, V; consists of all vectors = such that Ax = A\xz. Let U; be the
orthogonal complement of V;. By definition, U; consists of all vectors y such

that
(x,y) =0 forall zel]. (6)

Let us prove that A* maps Vi into itself. Suppose y € V; we want to prove
that A*y € V;. We have

A(Ary) = A"Ay = A*(\y) = M(A™y),

thus Ay € V; as advertised.
Now we prove that A maps U to itself. That is that (6) implies

(x,Ay) =0 forall z e V.
We have
(z,Ay) = (A"z,y) = 0,

because x € V] implies A*x € V; as we have seen before.
Now we show that A* also maps U; into itself. Indeed, if (y,x) = 0 for
all x € V1, then for all z € V; we have’

(A*ya $) = (y7 Ax) = )‘1<y7$) = 07

So A*y € U;.
So the restriction of A on U; is also normal, and the proof ends with an
induction as in the proof of ¢) in previous theorems.

7. Orthogonal projections In general, a projector is an operator P with
the property
P =P (7)

Let V' be the column space and U be the null-space. Equation (7) means
that P acts as the identity on V. Now (7) also implies that U NV = {0}.
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Indeed, if x € U NV then we have Px = 0 and z = Py for some y. Then
0=Pr=P*=Py=uxby (7),s0x=0.

So the whole space is the direct sum of U and V', which means that every
vector x has a unique representation

r=u+wv, where uelU and veV. (8)

Operator P collapses U to {0} and acts as the identity on V. In other words,
for an = as in (8), Pz = v.
A projector is called an orthoprojector (“orthogonal projector”) if in ad-
dition to (7) it is Hermitian,
P =P 9)
A projector is Hermitian if and only if U is orthogonal to V', which together
with (8) implies that U and V' are orthogonal complements of each other.

Indeed, let x € U and y € V. Then y = Pz for some z and Px = 0 by
definition of U and V. So

(z,y) = (z, Pz) = (Px,y) = 0.

FExercise. Previously we derived a formula for the orthoprojector onto the
column space of a (rectangular) matrix A with linearly independent columns:

P=A(A*A)1 A"
Show that this P has properties (1) and (9).

Ezercise. Let P, and P, be two orthoprojectors. Show that PP, =
PP, = 0 if and only if the subspaces Vi, V5 on which they project are or-
thogonal.

Fzxercise. Show that every normal operator A can be written in the form

A:)\1P1++/\kpk,

where A1, \;, are all eigenvalues, and P; is the orthoprojector onto the eigenspace
corresponding to A;. Moreover, these orthoprojectors P; satisfy

P;=1, and PP;=0 forall i,j.

k
=1

J

This representation of a normal operator A is called the spectral decomposi-
tion. The operator A is Hermitian when all ); are real, and unitary when all
A; have absolute value 1.



