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Ah tract 
We present a polynomial-time algorithm that, 

given ss a input the description of a game with 

incomplete information and any number of players, 

produces a protocol for playing the game that ‘leaks 

no partial information, provided the majority of the 

players is honest. 

Our algorithm automatically solves all the 

multi-party protocol problems addressed in 
complexity-based cryptography during the lsst 10 

years. It actually is a completeness Itheorem for the 

cias of distributed protocols with honest majority. 

Such completeness theorem is optimal in the (sense 
that, if the majority of the players is not honest, 
some protocol problems have no efficient solut:iontcf. 

1. Introduction 
Before discussing how to “m,ake playable* a 

general game with incomplete information (.which 
we do in section 6) let us address the problem of 

making playable a special class of games, the Toting 

machine games ( Tm-games for short). 

Informally, n parties, respectively and indivi- 

dually owning secret inputs zl,...,z,, would like to 
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correctly run a given Turing machine hi on these 

2;‘s while keeping the maximum possible pniracy 

about them. That is, they want to compute 

Y~(~l,..., 2,) without revealing more about the 
Zi’s than it is already contained in the value y itself. 

For instance, if M computes the sum of the q’s, 

every single player should not be able to learn more 

than the sum of the inputs of the other parties. 

Here A4 ma.y very well be a probabilistic Turing 

machine. In this case, all playen want to agree on a 

single string y, selected with the right probability 
distribution, as M’s output. 

The correctness and privacy constraint of a 

Tm-game can be easily met with the help of an 
extra, trusted party P. Each player i simply gives 

his secret input 2i to P. P will privately run the 

prescribed Turing machine, M, on these inputs and 

publically announce M’s output. Making a Tm- 

game piayable essentially means that the correctness 
and privacy constraints can be satisfied by the n 

players themselves, without invoking any extra 
party. Proving that Tm-games are playable retains 

most of the flavor and dificulties of our general 

theorem. 

2. Prelimina,ry Definitions 

2.1 Notation and Conventions for Prob 
bilistic Algorithms. 

We emphasize the number of inputs received 

by an algorithm as follows. If algorithm A receives 

only one input we write “A(*)*, if it receives two 

inputs we write A( .;) and so on. 

RV will stand for “random variable”; in this 

paper we only consider RVs that assume values in 
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{O,l}‘. In fact, we deal almost exclusively with 
random variables arising from probabilistic algo- 

rithms. (We make the natural assumption that all 
parties may make use of probabilistic methods.) 

If A( *) is a probabilistic algorithm, then for 
any input x the notation A(z) refers to the RV 

which assigns to the string u the probability that A, 

on input z outputs u. If S is a RV that assigns 
positive probability only to a single element e, we 

denote the value e by S. (For instance, if A( 0) is 

an algorithm that, on input z outputs zs, then we 

may write A( 2)a.j This is in agreement with tradi- 

tional notation. 

If f( 9) and g(*,“*) are probabilistic algorithms 

then r(g(*,.-)) is the probabilistic algorithm 

obtained by composing f and g (i.e. running f on 

g’s output). For any inputs z,y;-’ the associated 
RV is denoted f(g(z,y;**)). 

Let PA denote the set of probabilistic 

polynomial-time algorithms. We assume that a 
natural representation of these algorithms as binary 

strings is used. 

By 1” we denote the unary representation of 
integer k. 

2.2 Game Networks and Distributed Alga 
rithms 

Let us start by briefly describing the commun- 

ication networks in which games will be played. 

This is the standard network supporting the execu- 

tion of multi-party protocols. 

Informally, a game network of size n is a col- 

lection of (interacting) probabilistic polynomial-time 

Turing machines. Each machine has a private read- 

only input tape, a private write-only output tape and 

a private read-write work tape. All machines share a 

common read-only input tape and a common write- 

only output tape. The n machines communicate by 

means of n*( n- 1) special tapes. Machine i publi- 

tally sends messages (strings) to machine j by 

means of a special tape i + j on which only i can 
write and that all other machines can read. There is 

a common clock whose pulses define time intervals 

1,2,... . Messages are sent at the beginning of a 

time interval and are received within the same time 

interval. We stress, though, that our result is 

largely independent from the specific communica- 

tion mechanism, and also holds for “less equipped” 
communication networks.(‘) 

(1) For instance, there may be only one com- 
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A probabilistic distributed algorithm S run- 

ning in a game network of size ta is a sequence of 

programs S=(Si,...,&), where 5’; is the program of 
the ith Turing machine in the network. We denote 

by PDA the class of all probabilistic polynomial- 
time distributed algorithms. 

Let SEPDA run in a game network of size n 

with common input CI and (respective) private 
inputs z1 ,..., z,. Then HS( zi ,..., z,, CI) denotes the 

RV consisting of the public history, that is the 

sequence of all messages sent in an execution of S; 

HSi( Zl,..., z,,,(X) denotes the RV consisting of the 

private history of machine i, that is the sequence of 
the internal configurations of machine i in an exe- 

cution of S; for TC {l,..., n}, HSr(2, ,..., z,) 

denotes the vector of the private histories of the 

members of T in an execution of S; and 

W( zi,...,z,,,CZ) denotes the RV consisting of the 

private output of machine i in an execution of S. 

2.3 Adversaries 

We consider two interesting types of adver- 

saries (faulty machines) in a game network: passive 

ones (a new notion) and malicious ones (a more 
standard notion). 

A paaeive adversary is a machine that may 

compute more than required by its prescribed pro- 

gram, but the messages it sends and what it outputs 

are in accordance to its original program. (Passive 
adversaries may be thought as machines who only- 

try to violate the privacy constraint. They keep on 

running their prescribed programs correctly, but 

also run, “on the side”, their favorite polynomial- 

time program to try to compute more than their due 

share of knowledge. In an election protocol, a pas- 

sive adversary may be someone who respects the 

majority’s opinion -and thus does not want to cor- 

rupt the tally- and yet wants to discover who voted 

for whom.) 

A malicious adversary is, instead, a machine 

that deviates from its prescribed program in any 

munication tape. In this case, digital signatures 
can be used to authenticate the sender. In case 
that not all machines may read all communica- 
tion tapes, Byzantine agreement can be used to 
simulate the fact that all processors agree on 
what message machine i has sent to machine j 
at time t. The common clock may be replaced 
by local clocks that don’t drift “too much”. The 
quite tight synchrony of the message delivery 
can be replaced by a feasible upper bound on 
the time it takes a message to be delivered, and 
so on. 



possible action. That is, we allow the program. of 

such a machine to be replaced by any fixed prob> 

bilistic polynomial-time program. (Malicious adver- 

sary not only have a better chance of disrupting the 

privacy constraint, but could also make the outcome 

of a Tm-game vastly different than in an ideal run 

with a trusted party.) 

We allow machines in a game netwo:rk: to 

become adversarial in a dynamic faehion, during the 

execution of a protocol. We also allow adversOarial 

machines (of either type) t0 undetectedly 

cooperate. Adversarial machines are not allowed, 

however, to monitor the private tapes or the inter- 

nal state of good machines. 

We believe the malicious-adversary scenario 

to be the most adversarial among all the natural 

scenarios in which cryptography may help. 

Jumping haed, we will show that all Tm- 

games are pIayable with any num.ber of passive 
adversaries or with < n/2 malicious adversaries. 

2.4 Indistinguishability of Random Vari- 
able3 

Throughout this paper, we will only consider 

families of RVs U+Uk} where the parameter k 

ranges in the natural numbers. Let iJ={lJk} and 

V={V,} be two families of RVs. The following 

notion of computational indistinguish ability 
expresses the fact that, when the length of k 

increases, Uk becomes “replaceable” by V, i.n the 

following sense. A random sample is selected either 
from U, or from V, and it is handed to a “judge”. 

After studying the sample, the judge will proclaim 

his verdict: 0 or 1. (We may interpret 0 as the 

judge’s desicion that that the sample came frolm U,; 

1 as the desicion that the sample came from ‘Vk.) It 

is then natural to say that Vk becomes “replaceable” 

by V’ for k large enough if, when k increases, the 

verdict of any computationally bounded judge 

becomes “meaningless”, that is essentially uncorre- 

lated to which of the two distribut,ions the sample 

came from. 

To formalize the notion of computational 

indistinguishablity we make use of nonuniformity. 

Thus, our “judge”, rather than polynomial time Tur- 

ing machine, will be a poly-size jamily of circuits. 

That is a family C+Cb} of Boolean circuits C!k with 
one Boolean output such that, for some constants 

c,d>O, all C,EC have at most k” gates and led 

Boolean inputs. In order to feed samples from our 

probability distributions to such circuits, we will 

consider only poly-bounded families of R.Vs. That is 

families U=qUk} such that, for some constant 

e >O, all RV VIE V assigns positive probability 

only to strings whose length is exac:tly k”. If 

V’(Ub } is a poly-bounded family of RVs and 

C’(Cb } a poly-size sequence of circuits, we denote 
by P( V,C,k) tl-e probability that C, outputs 1 on 

input a random strings from U,. (‘Here we assume 

that the length of the strings that are assigned posi- 

tive probability by U, equals the number of 

Boolean inputs of Ck.) 

Definition (Computational indistinguishabil- 

ity): Two poly-bounded families of RVs V and V 

are computationally indistinguishable if for all poly- 

size family of circuits C, for all constants f >O and 

all sufficiently large k EN, 

IP( U,C,k)-P( V,C,k) lck-'. 

This notion was already used by Goldwasser 

and Micah ]:GM] in the context of encryption and 

by Yao [Y] in the context of pseudo-random gen- 
eration. For other notions of indistinguishability and 

further discussion see [ GMR] . 

Remark 1: Let us point out the robustness of 

the above definition. In this definition, we are 

handing our computationally bounded “judge” only 
samples of size 1. This, however, is not restrictive. 

It should be noticed that two families of RVs (Ub } 
and {Vk} are computationally indistinguishable with 

respect to samples of size 1 if and only if they are 

computationally indistinguishable with respect to 

samples whose size 

mial in k. 

3. Tm--es 

sax-b 
An Tm-game 

is bounded by a fixed polyno- 

With Passive Advep 

problem consists of a pair 

(g,l’), that is, the description of a Turing 

machine M and an integer k, the security parame- 
ter, presented in unary. 

Let us now make some simplifications that 

will expedite our exposition. Without loss of gen- 

erality in our scenario, we assume that, when 

(a,l”) is the common input in a game network, all 

private inputs have the same length 1 and that 

T(l), the running time of M on inputs of size 1, is 

less than k. 

Let SEPDA. We say that S is a Tm-game 

Solver for passive advereariee if, for all Tm-game 

problems (n,Ik) given as common input and for 
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all (respective) private inputs zi,...,z., 

1) (Agreement constraint) 

At the end of each execution of S, for all 
machines i and j, i’s private output equals j’s 

private output. 

2) (Correctness constraint) 

OSl(%..., z,,(m,lL)) =M( z1 ,..a, z,) and 

3) (Privacy constraint) 

v Tc {I,..., n} and VAEPPT, 3BEPPT 

such that {Ak) and {B,} are computationally 

undistinguishable RVs. 

Here 

A+( (@,l’) , ffS( (p,lk)) , HST( @,lk)) ) 

and 

&-B( (g,l’) , M(z l,**s,~,) 7 {(i,zi): iET})* 

Let us now interpret the above definition. 

llhe agreement constraint 

This constraint essentially says that all machines 

agree on a single, common string as the output of 

S. 

?he coffectness conetraint 

This constraint ensures that the output of a game 

solver S coincides with the one of M. As M may 

be probabilistic, the equality of the correctness con- 

straint must interpreted ss equality between RVs. 

The privacy constraint 

Notice that passive adversaries appear in the above 

definition in an implicit way. Algorithm A can be 
thought FJ~ all the members of T being passive 

adversaries computing after an execution of S. In 

fact passive adversaries are obliged to send mes- 

sages according to S and their private history, in an 

execution of S, is an explicit input ta A. Let us 

stress that the private history of a machine i con- 

tains the name i, the private input zip and M’s oub 

put as well, Thus the privacy constraint essentially 

says that whatever the passive adversaries may com- 

pute after executing S, they could also easily 

deduce from the desired M’s output, y, and their 

own private inputs (which they are entitled to 

have!). In fact, if they are given y by running S, 

the passive adversaries will see, in addition to y, 

only the public history and their own private his- 

tory. However, whatever they could efficiently 
compute with this additional input, they could also 

have computed without it. In other words, S keeps 

whatever privacy of the inputs of the good parties is 

not “betrayed” by the value y itself. For instance, if 

M computes the sum of the Zi’s, then the privacy 
constraint will allow the adversarial players to com- 
pute (at the end of S) essentially only the sum of 

the inputs of the good parties. As for another exam- 

ple, if M is the identity function, then the privacy 

constraint holds vacuously. Same if the set T is the 

set of all players. 

4. Hints on How to Play Tm-games 
With Passive Adversaries 

At a first glance enforcing both correctness 

and privacy constraints of a Tm-game appears easy 
only for special cases of M, say the ones computing 

a constant function. None-the-less, 

Theorem: If trapdoor functions exist, there 

exists a Tm-game solver for passive adversaries. 

In this extended abstract we limit ourselves to 
give a few indications, in an informal manner, 

about the proof of the above theorem. Moreover, 

not to get into further complications, we do not let 

the set of adversarial machines to be chosen 
dynamically, during the execution of the protocol, 

but at its start. (We stress, though, that the adver- 
sarial set is still unknown to the good machines). 
This restriction will be removed in the final paper. 

4.1 A New and General Oblivious 
Transfer Protmcol 

In (HR], Rabin proposes the beautiful notion 

of an Oblivious Transfer (OT) . This is a probabilistic 

polynomial-time algorithm that allows A( lice), who 
knows the prime factorization of an integer n, to 

send it to B(ob), who knows just n, so that B will 

receive n’s factorization with probability l/2 and A 

does not know whether or not B received it. 

Clearly, Rabin’s notion of an OT, supposes that fat- 

toring is computation&y hard. Under this sssump- 

tion, he proposed a protocol that, if A and B are 
allowed to be at most passive adversaries, correctly 

implements an OT. This protocol, however, may 

not work (i.e. no longer possesses a proof of 

correctness) if A and B are allowed to be malicious. 

Using the interactive proof-systems of (GMR], 

Fischer, Micah, Rackoff and Wittenberg [FMRW] 

found a protocol that correctly implement8 OT 

under the simple (and in this context minimal) 
assumption that factoring is hard. Rabin’s OT has 

proved to be a very fruitful notion, as exemplified 

by various applications proposed by Blum [B] . 
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A more general and useful notion of OT has 
been proposed by Even, Goldreich and Lempel 

[EGL], the one-out-of-twuo OT. In their framework, 

A has two messages m. and ml. By using a cryg 

tosystem E, she computes o,,=E( m,) and 

o I&( ml) and sends c I and CJ 2 to 23. B chooses 

one of these encryption, CJ;. A one-oubof-two OT 

allows B to read the corresponding message: m;, 

while A will not know which message B has read 

(whenever m. and m i are different). This notion 

achieves the right level of generality and is crucial 

to what follows. Even, Goldreich and Lempel, also 

proposed the first implementation of a one-out-of- 

two OT using public-key cryptosystems. Their pro- 

tocol has the merit of having freed the implements 

tion of an oblivious transfer from the algebraic set 

ting to which it appeared to be confined. Their pro- 

tocol, though, requires a quite strong set of assump 

tions even when the adversaries are only passive. 

Below, we contribute a new protocol that 

correctly implements a one-outof-two OT in pres- 

ence of passive advarsaries. The existence of trap 

door permutations suffices to prove the correctness 

of our protocol. 

Trapdoor and One-Way functions 

A satisfactory definition of a trap-door permu- 

tation is given in [ GoMiRi]. Here let us informally 

say that a family of trapdoor permutatio~ns f 

fossesses the following properties: 

* It is easy, given an integer k, to randomly 

select permutations f in the family which 

have k as their security para.meter, together 

with some extra “trap-door” information allow- 

ing easy inversion of the permutations chosen. 

* It is easy to randomly select a point in f’s 

domain. 

* It is hard to invert f without knowing f’s 

trap-door on a random element in f’s domain. 

We can interpret the above by saying that a party A 

Ct3Il randomly select a pair of permutations, 

( f ,f- ‘), inverses of each other. This will enable A 
to easily evaluate and invert j; if now A publicizes 

f and keeps secret f- ‘, then invlerting f will be 

hard for any other party. We may write j, to 

enphasize that k is the security parameter of our 

permutation. 

Trapdoor permutations are a special case of 

one-way permutations. These are permutations 
enjoying the three properties above, except that we 

do not insist that the trap-door information exists. 

Random Bim in OneWay Permut&iona 

Our one-out-of-two OT protocol makes use of 

trap-door functions f hiding a random bi.t B, . Here 

B, is a polynomial-time computable Boolean func- 

tion; the word “bit” is appropriate as B, evaluates to 

1 for half of the :‘s in f’s domain. 

We say that {B, } is a random bit in a family 

{f } of trapdoor permutations if V predicting algo- 

rithm Alg that, on inputs f =ft and f (sd), outputs, 

in T(k) stelps, a guess for B,( ( z)) that is correct 

with probability E, 3 A/g’ that, on inputs f and 

f(z), outputs z in poly( T( k),t-I) expected time. 

Thus, being f trap-door, no probabilistic, 

polynomial-time algorithm given fk( z), can 

correctly predict a~,( z) with probability > 

l/2 + l/poly( k). W e might as well Rip a coin. 

Thus, for a one-way permutation f , given f(z) the 

value of B1( Z) cannot be guessed in polynomial 

time essenti,ally better than at random. 

The notion of a random bit in a one-way per- 

mutation was introduced by Blum and Micah [BM] 

who showed a random bit in the Discrete Logarithm 

Problem, a ,well known candidate one-way permuta- 

tion. Chor and Goldreich show random bits in the 
RSA function. Do all one-way functions have a ran- 

dom bit? We do not know the answer to this ques- 
tion, but Yao [Y] h as shown the next best thing. 

Namely, that given a one-way (trap-door) permuta- 

tion f , one can construct a one-way (trap-door) 

permutation, F with a random bit BF (for a detailed 

proof of this theorem see [BH]). Levin [L] has 

actually proved a more general version of this 

theorem. 

OurProtocd 

Without loss of generality, we assume that the two 

messages in the one-outrof-two OT both consist of 
a single bit. 

In ou.r protocol, both A and BEPA. A’S 
inputs are a pair of bits (bo , b,) and their 
corresponding pair of encryptions (E( bo) , E( b,)) 

where E is a probabilistic encryption algorithm 

[GM]. The pair (E( b,) , E( b i)) is also an input to 

B who has an additional private input bit (Y. It is 

desired that even if some party is a passive adver- 

sary the following two properties hold: 

9 B will read the bit b,, but will not be able to 

predict the other bit, b,, essentially better 
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than at random. 

ii) A cannot predict o essentially better than at 
random. 

We achieve this by means of the following protocol. 

Step 1 

A randomly selects (I,!-‘), a trap-door function of 
size Jz (having a random bit S,) together with its 

inverse. She keeps f-’ secret and sends f to B. 

Step 2 

B randomly selects z. and 2, in f’s domain and 

computes z=f( zo) and sends A the pair 

tf(Zo)~Zl) if cr=f) 

(upu) ={ (z0,f(571)) if cu==4 

Step 3 

.A comput- (co,~) =(B,(f-l(u)) , B/(!-‘(U))). 
She sets do = bO zor co and d, =bl ZOO cl and 
sends (d,,d,) to B. 

Step 4 

B computes b, =d, zor B&J. 

First notice that A,BEPA and that B 

correctly reads b,. Property i) is satisfied as B only 
sees b, exclusived-ored with a bit essentially 50-50 

unpredictable to him. Thus he cannot correctly 

guess 1, essentially better than at random. Let us 

now show that ii) holds. As f is a permutation, ran- 

domly selecting z in /‘s domain and computing 

j(z) yealds a randomly selected element in f’s 

domain. Thus (U ,u) is a pair of randomly selected 

elements in f’s domain both if a=@ or ad. As 

(u,u) is the only message B sends A, not even 

with infinite computing power A will find out 

whether B has read bo or bl. 

Notice that the protocol makes use that the 

adversaries are at most passive in a crucial way. 

Should in fact B send (~,v)+j(z~),j(z,)) in step 

2, he will easily read both bits. Thus, we will make 

use of additional ideas to handle malicious adver- 

saries. 

Notice also that we never made use of the 

encryptions E( b,) and E( b,). b, and bl could have 

been bits in “A’s mind.” We have added these 
encryptions for uniformity with the next protocol in 

which the two messages must appear encrypted. 

Another reason is that, when we will handle mali- 
cious adversaries, we will need these encryptions to 

define the problem. 
223 

It is easy to see that, having solved the 
single-bit messages case, we have also solved the 

case of arbitrary messages m. and mi of equal, 
known length 1. In fact, we can repeat the above 
protocol I times, so that, if (Y is 0 (1)) B is required 

at the ith time to learn the ith bit of mo (ml). 

4.2 S tllengthening Yads Combined 
Oblivious Transfer 

In (Y2], Yao presented a protocol that we call 

combined oblivious transfer (COT). The protocol 

involves two parties A and B, respectively owning 

private inputs a and b and any chosen function g. 
It possesses the following property: upon termina- 

tion, A computes g( a ,b ), while B has no idea of 

what A has computed. If we think of a ad b as 

secrets, B appears to obliviously transfering a 

prescribed combination of his and A’s secret to A. 

Yao implemented COT based on the assumption 

that factoring is hard, (which yelds, as shown by 

Blum [B]) a particular trap-door permutation. We 

strengthen his result by showing that COT can be 
correctly implemented based on any trap-door per- 

mutation. We do this by using the one-oubof-two 

OT of section 4.1 in Yao’s scheme. Let us consider 

first the case where a and b axe bits and g is the 
Boolean AND. Consider figure 1. 

figure 1: A COT AND-gate 

Here E ,,...,Ea are independently selected encryption 

aIgorithms, respectively having decryption keys 

D1,...,DB. E, and E2 label the first inputrwire, E3 

and E, the second inputwire, and E5 and E, the 

output-wire. Each row in the gate is formed by the 
encryption of two strings. m and n are two ran- 

domly selected strings whose bitrby-bit exclusive-or 

equals Dg. p and q are two randomly selected 



strings whose xor equals D,; so are ,B and t; so are 
u and v. The 4 rows have been put in the ga,te in 

random order. E1,EzandEh,Eo are pulblically labelled 
by complementary bits. Es and El are each secretely 

labelled by a bit; more precisely, E3 is SECRE’IEiLY 

labelled 0 with probability l/2 and El is labe’lled 
with the complement of Es’s bit. (This secrecy is 

pictorially indicated by drawing E3 and El’s bits by 

a dotted line.) Define the value of a wire to be 0 

(1) if one ONLY possesses the decoding algorithm 

of encryption algorithm labelled 0 (1). Then figure 

1 is a or-gate. For instance, assume that both 

inputrwires have value 0. That is, one possesses 

only D1 and D4. Then one is able to decrypt both 

entries only in the third row. By taking the zor of 

u and v, one easily obtains De, but has no idea 

what Ds may be. Thus the output-wire has value 0 

= AND(O,O). 

To COTransfer AND( a, b), B generates a 

COT AND-gate like in figure 1, keeping for himself 

all decoding algorithms and all the strings in the 

rows. Then, he gives A the decoding algorithm of 

the second inputwire that corresponds to the value 

of b, his own input. Notice that as the association 

between Es, E, and 0,l is secret (and EI,E2,E3,El 

enter symmetrically in the gate rows), this will not 

betray b at all. Now A will get either D, or D2, 

according to the value of a, by means of our one- 

outof-two OT. Thus, B will not know which slgo- 
rithm she got. At this point A can easily compute 

the value of the outputrwire. Thus she will be the 

only one to know AND( a,b). 

It is trivial to build a COT NCV-gate. Notice 

that B may also keep secret the corresponding 

between 0,l and Eb,E6. 

fig. 2 

This allows ,the outrput wire to become an inputr 

wire of another gate. If the encryption algorithms of 

this second gate are publically labelled O/l (see fig. 
2), we see th.at A may evaluate any a-gales function 

on her and 13’s inputs, without knowing intermedi- 
ate resu1t.s. Better said, B can “COTransfer” the 

value of any 2-gates function. By cascading this 

way COT AND-:ates and COT NOT-gates (which 

are trivial to design), we can see that B can 

COTransfer the value of any function, provided that 

there is an upper bound to the length of A’s and 

B’s inputs, ((else, the length of the inputs will be 

betrayed) . 

4.3 The Tmgame Solver for passive 
adversaries 

Recall that a Tm-game solver wants to com- 

pute M( Zl,..., z,) while respecting the privacy con- 
straint. We want to use COT as a subroutine to con- 

struct a Tm-solver. This does not appear to be 

straightforward. For instance, if two parties i and j 

use COT SO that i will compute g( zi,Zi) for some 

function g, this would already be a violation of the 

privacy constraint. Recall also that the Tm-game 

solver has to be polynomial not only in M’s run- 

ning time, but also in n, the number of players. 

We find a way out by making special use of a 

lemma of Barrington’s [Ba] that simulates computz+ 

tion by composing permutations in Sg, the sym- 

metric group on 5 elements. The general picture is 

the following. First transform the Turing machine 

M of a Tm.-game to an equivalent circuit C in a 

standard way. The Boolean inputs of C will be 

b 1’ ,..., b[‘,....,b” I ,..., br, the bits of the n, l-bit long, 

inputs of tour parties. This circuit C is then 

transformed to straightrline program as in [Ba]. This 

straightline program is essentially as long as C is 

big. In it, 

* 0,l are encoded by two (specially selected) 5- 

permutations 

* the variables range in Sb and 

* each instruction consists of multiplying (com- 

posing) two 5-permutations u and 7, whre c 

(7) is either a constant, or a variable, or the 

inverse (in S6) of a variable. 

At the start, each party takes each of his private bits 

and encode,s it by a &permutation Q as in [Ba]. 

Then he divides 6. That is, he selects at random n- 
1 5-permutations r~~,...,b n-l and gives the pair 

(i,a i) to party i (possibly hipself). He then sets 
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u ,=(u 1’ * ’ - ‘U “- J’ w and gives (n,u “) to party 

n. Now, inductively, assume that each variable is 

divided among the parties. That is, for each vari- 

able Q, each player i possesses an index permuta- 

tion pair (z,cr a) so that G u, =cr and, given only 

n- 1 pieces, u cannot be guessed better than at ran- 

dom. We now want to show that each instruction 
can be performed (i.e., each party can compute his 
individual piece of the result) respecting the privacy 

constraint. There are essentially 3 cases. 

Caae 1: The instruction is of the form u *c, 
where u is a variable and c a constant. By induc- 

tion, each party has a piece of the form (2 ,u =). 

Then the party owning the piece (n,u .) sets his 

new piece to be (n,u (I .e) and all each party leaves 
his piece untouched. It is immediately checked that 

the ordered product of the new pieces is use and 

that privacy has been preserved against n- 1 passive 

adversaries. 

Case 2: The instruction is of the form 6-l.c 

where, again, u is a variable and c a constant. It 

will be enough to show how to compute pieces for 

u -’ respecting the privacy constraint. To do this, if 

a party has a piece ( z ,u ,), he sets his new piece to 

be (n-z+l,u;‘). 

Case 8: The instruction is of the form u ‘I, 
where both u and r are variables. Then u .r = 

Ul “‘U”‘T~“‘f~, and assume for simplicity that party 

i possesses piece Ui and ri. Unfortunately, party 1 
cannot compute his piece of u *r by multiplying his 

own two pieces. In fact, they are n positions apart 

in the product and Sb is not commutative (a fact 
crucial in Barrington’s argument). The idea will 

then consist of making “partial progress”. That is, 

moving party l’s pieces closer together by “swap- 

ping” u n and rl. This can be correctly accomplished 

by giving party I a piece 7,’ and party n a piece u n’ 

so that ri’.o ,,’ =u ,,*rl. This way the product of 

the new (and newly ordered pieces) would remain 

u *r. One way of doing this would be of having 

party 1 and party n tell each other u ,, and rl. How- 
ever this would violate the privacy constraint with 

respect to a set of n- 1 passive adversaries. Instead, 

we use COT in the following way. Party n randomly 

selects a 5-permutation p. Consider now the func- 

tion g such that, for 5-permutations x,y, and z, 

g(z,(y,z))=w where W-Z =y.z. Let now party 1 

(with the role of A and input u==r,) and party n 
(with the role of B and input b =(a,,~)) play 

COT with function g. Set ri’ =g( ~,a) and u, =p. 

Then we have made the desired partial progress. In 

fact, not only the product of the new pieces is unal- 

tered, but we have also respected the privacy con- 
straint. Informally, party n’s new piece is a random 
5-permutation selected by party n himself and thus 

cannot give him any information neither about 

party l’s old piece nor the new one; moreover the 

transference of g( a, b ) is oblivious and thus cannot 

give party tl any knowledge either. On the other 

side, party 1 is dealt a new piece g(rr,(on,P)) and 

he knows rl. However, as for all z and y, 

g(z,( y;)) is injective on Sg, and p has been ran- 

domly and secretely selected by party ti, also party 
1 does not get any knowledge that he did not pos- 

sess before! Notice also that during this ‘swap” we 

did not create any other pieces. Thus after n 

“swaps” the only two pieces of party I will be in the 

first two positions in the product and he can thus 
multiply them together. This product will be party 

l’s piece for the variable u *r. It should be verified 

that the entire walk of party 1 r-piece towards the 

left preserves correctness and does not violate the 

privacy constraint. Essentially because a new, ran- 

dom piece is created at each step. This way, after 

O( n2) nSWapSn, and in polynomial time, all parties 

receive their piece of c ‘7. 

At the end of the straigheline program, for 

each output variable 7, each party publicizes his 

own piece (2,7=), the ordered product of these 

pieces is computed and the output bit recovered so 

to satisfy both the correctness and the privacy con- 

straint. (A more formal argument will be given in 

the final paper.) 

5. Malicious Adversaries 
The complexity of our Tm-game solver greatly 

increases when up to half of the players is allowed 

to be malicious and can more powerfully collaborate 

to try to disrupt the correctness and the privacy 

constraints. We use essentially all the cryptographic 

tools developed in the last ten years in the (correct) 

hope that they would make possible protocol design. 

Also, the proof of its correctness is rather delicate 

and unsuitable for an abstract. We will give it in the 

final paper. Here we only indicate what making 

playable a Tm-game with malicious advesaries may 

mean and which general ideas are involved in our 

solution. 

As in this case some of the parties may not 
follow their prescribed programs at all, it is neces- 

sary to clarify what a private input is. After all, what 
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stops someone from pretending th,at his private 

input is different from what it actually is? To avoid 

this, we assume that the parties have established 

their private inputs by announcing correct encod- 

ings of them. Their inputs are by definition the 

unique decryption of their respect,ive encodings. 

Moreover, it shoud be clear that seeking a solution 

to a Tm-game problem makes sense only if the par- 

ties are “willing to play”. If, say, one of them “com- 

mits suicide”, carrying with himself what his private 

input was, there is very little one can do besides 

investing exponential time and break his encryption. 

However we can, loosely speaking, prove that 

Given n players willing to play, less than half 

of which malicious, all Tm-games are playable. 

The above term “willing to play”, indicates a techni- 

cal condition rather than a psychological one. 
Namely, having successfully completed the engage- 

ment protocol. After completing this protocol, all 

players can be forced to play any desired game. 

The engagement protocol consists of two phases. 

1) For each player i, a protocol is performed at 

the end of which no minority of the pIlayers 

can even predict a bit of i’s private inpul; with 

chances essentially better than l/2. However, 

it is guaranteed that any subset of cardinality 
>n/2 can, without the cooperation or even 

against the actions of other players, easily 

compute i’s private input. 

2) The community deals to each player a 

sequence of encrypted “random” bits so that 

a) the recipient knows their decryption, 6) 

they appear unpredictable to ;any minority of 

the players, but c) they are easily computable 

by any majority of the players. 

We stress that while no one can be forced to com- 

plete the engagement protocol (so to become “wil- 

ling to play”), no one can decide not to complete it 

because he received a better idea of what the result 

of the subsequent game may be. Completing the 
engagement protocol will not give any player (or 

any small enough group of players)1 any knowledge 

about the others’ private inputs. 

Phase 1 of the engagement protocol consists 

of a verifiable secret sharing in the sense of Awer- 

buch, Chor, Goldwasser and Micali [CGMA] . How- 

ever, we contribute a new protocol both tolerating 

up to n/2 malicious adversaries and using any trap 

door function whatsoever. Phase 2 of the engage- 

ment protocol is the multy-party version of 13lum’s 

coin flipping by telephone. Despite the (deceiv- 

ingly) similarity with the verifiable secret sharing of 

phase 1, to iimplement phase 2 we must make use 

of a yet unpublished theorem (and algorithm) of 

ACGM. 

We now give a bird’s eye view of how to 

make any Tm-game g playable despite malicious 

adversaries. On input hd,lk, we first run the 

engagement protocol, then the passive-adversary 

playable version of the Tm-game. Here we require 

all parties to use, as their private inputs, the strings 

they shared in phase 1 of the engagement protocol 

and, as a source of randomness, the encrypted ran- 

dom bits ewh was dealt in phase 2. The key point 

is that, now, no malicious adversary can deviate 

from his prescribed program, and thus he becomes 

a simple passive adversary. In fact, he is required to 

prove, in zero-knowledge (in the sense of 

Goldwasser, Micali and Rackoff [GoMiRa]), that 

each message he sends is what he should have sent 

being honest, given his private input, his random 

choices and the messages he received so far. (Here, 
an essential tool is our recent result that all NP 

languages possess zero-knowledge proofs [GMW] .) 

If a malicious party, frustrated at not being able to 

send messages according to a different program, 

decides to stop, his input and random bits will be 

reconstructed by the community who will compute 
his messages when necessary, without skewing the 
probability distribution of the final outcome. 

We would like to stress our new use of NP- 

completeness. From being our most effective way 

to prove lo,wer-bounds, it now becomes our most 

effective tool to construct correct protocols. 

6. General Games 
Many actions in life, like negotiating a con- 

tract, casting a vote in a ballot, playing cards, bar- 

gaining in the market, submitting a STOC abstract, 

driving a car and simply living, may be viewed as 

participating with others in a game with 

payoffs/penalties associated with its results. This is 

not only true for individuals, but also for com- 
panies, governments, armies etc. that are engaged 

in financial, political and physical struggles. Despite 

the diversity of these games, all of them can be 

described in the elegant mathematical framework 

laid out by Von Neumann and Morgenstern earlier 

in this century. Game theory, however, exhibits a 

“gap”, in that it neglected to study whether, or how, 
or under which conditions, games can be imple- 
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mented. That is, it never addressed the question of 

whether, given the description of a game, a method 

existes for physically or mentally playing it, We do 
fill this gap by showing that, in a complexity 

theoretic sense, all games can be played. 

In this extended abstract we will only informally 
clarify what and how this is. We start by briefly 

recalling the ingredients used by game theory to 
model a n-players game with incomplete information. 

6.1 Games 

Essentially, a game consists of a set S of pos- 
sible stntes, representing all possible instantaneous 

descriptions of the game, a set M of possible moues, 

describing all possible ways to change the current 

state of the game, a set {K,,Ks,...,K,) of knowledge 

functions, where K;(o) represents the partial infor- 

mation about state Q possessed by player i, and a 
function p, the payofl junction, that, evaluated on 
the final state, tells the outcome of the game. 

Without loss of generality, the players make moves 
in cyclic order and the set of possible moves in any 

state are the same for all states. Also, WLOG, the 

game goes on for a fixed number of moves m. 
With little restriction we do assume that the players 

make use of recursive strategies for selecting their 
moves. (The classical model does not rule out 

selecting moves according to an infinite table.) 

Let us now see how a game evolves using, in 

parenthesis, poker as an example. The game starts 

by having “NATURE” select an initial state o 1. (For 

poker, ~7 i is a randomly selected permutntion of the 

52 cards; the first 5n cards of the permutation 

representing the players initial hands and the 
remaining ones the deck.) Player 1 moves first. He 

does not know u, -nor does anybody else-, he only 

knows Ki(a i), h is own hand: the first 5 elements 

of permutation ai). Based solely on Ki(a r), he 

will select a move p (e.g. he changes 3 of his cards 

with the first 3 cards of the deck). This move 
automatically updates the -unknown!- current state 

to 62. (The new state consists of the cards 

currently possessed by each player, the sequence of 

cards in the deck and which cards were discarded by 

player 1. K,(crs) consists of the new hand of player 

f and the cards he just discarded.) Now it is the 

turn of player 2. He also does not know the current 

state 02, he only knows K2(a2). Based solely on 

this information, he selects his move, which 
updates the current state, and so on. After the 

prescribed number of moves, the payoff function p 

is evaluated at the final state to compute the result 

of the game. (In poker the result consists of who 

has won, how much he has won and how much 
everyone else has individually lost.) 

Note that a Tm-game is indeed a game in 

which the initial state is empty and each player 

moves only once. State ui consists of the sequence 

of the first i moves. Each player has no knowledge 
about the current state and chooses his move to be 

the string z;, his own private input. The payoff 

function M is then run on u “. (Having probabilistic 

machines running on the final state, rather than 

deterministic ones, is a quite natural generaliza- 

tion.) 

From this brief description it is immediately 

apparent that, by properly selecting the knowledge 

functions, one can enforce any desired “privacy’ 

constraints in a game. 

6.2 Playable Games 

Game theory, besides an elegant formulation, 

also suggests to the players strategies satisfying 

some desired property (e.g. optimality). That is, 
game theory’s primary concern is how TO SELECT 

MOVES WELL. However, and ironically!, it never 

addressed the question of how TO PLAY \VELL. 
For a general n-player game, all we can say is that 

we need n+l parties to properly play it; the extra 

party being the “trusted party”. The trusted party 

communicates privately with all players. At step t, 

he knows the current state ut of the game. He 
kindly computes a==&& mod ,,(o t), communicates cy 

to player t mod n, receives from him a move p, 

secretely computes the new state S,,, =p(S,), and 
so on. At the end, the trusted party will evaluate 

the payoff function on the final state and declare 

the outcome of the game. Clearly, playing with the 

trusted party achieves exactly the privacy con- 
straints of the game description, and at the end 

each player will get the correct outcome. 

Now, the fact that, in general, a n-person 

game requires n+l people to be played, not only is 

grotesque, but it also diminuishes the otherwise 

wide applicability of game theory! In fact, in real 

life situations, we may simply not have any trusted 

parties, whether men or public computers. 

Recently, complaints have been raised about finan- 

tial transactions in the stock market. The complaints 

were about the fact that some parties were enjoying 

knowledge that was considered “extra” before 

choosing their move, i.e. before buying stocks. Just 
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another game, the stock market, but one in which 

you may desire trusting no one! 

We are thus led to consider the notion of a 

(purely) playable game. This is a xr-person game 

that can be implemented by the n players without 
invoking any trusted parties. In general, however, 

given the specification of a game with complicated 

knowledge functions, it is not at all easy to decide 

whether it is playable in some meaningful way. 

Here, among the “meaningful WityS”, we d L so 

include non-mathematical methods. Yet, the deci- 

sion may still not be easy. 

Poker, for instance, has simple enough 
knowledge functions (i.e. privacy constraints) that 

makes it playable in a “physical” way. In it we use 

cards with equal “back” and “opaque”, tables whose 

top does not reflect light too much, we shuffle the 

deck “a lot*, and we hand cards “facing down”. All 

this is satisfactory as in our physical model (world) 

we only see along straight lines. Ha’wever, assume 

we define NEWPOKER as follows. A player may 

select his move not only based on his own hand, 
but also on the knowledge of whetlher, combining 

the current hands of all players, one may form a 

royal flush. NEWPOKER is certainly a game in the 

Von Neumann’s framework but it, is no longer 

apparent whether any physical realization of the 

game exists, particularly if some of the players may 
be cheaters. 

This is what we perceive lacking in game 
theory: the attention to the notion of playability, At 

this point a variety of good questions naturally 

arises: 

Is there a model (physical or mathematical) 

which makes all game8 playable? 

Or at least, 

Doe8 every game have a model in which: it is 

playable? 

And if not, 

Should we restrict our attention. to the clase of 

playable games? 

We show that the first question can be affirmatively 

answered in a computational complexity model. 

6.3 A General Result 

Theorem: If any trap-door function exists, any 
game is playable if more than half of the players are 

honest. 

Essentially our result consists of a protocol for 

simulating the trusted party of an ideal game. That 

is, if more than half of the piayers follow our proto- 

col, whatever a player (or a set of players of size 

less than n/2) k nows at any step of the game, he 

would have also known in an ideal execution of the 

game with a trusted party. In our context the 

knowledge const&nts are satisfied in a cornpub 

tional complexity sense. Namely, any player (or 
collection of dishonest players) in order to compute 

anything more than his due share of the current 

state, should perform an exponential-time computa- 

tion. Unfortunaly, we cannot, in this extended 

abstract, elaborate on the relationship between gen- 

eral games and Tm-games, nor how to pass from 

solving the latter ones to solve the general case. 

We’ll do this in the final paper. 

6.4 A Completeness Theorem For Fad+ 
Tolerant CIAmputation 

Our main theorem has direct impact to the 

field of fault-tolerant computation. This is so as pro- 

tocols, when properly formalized (which we will do 

in the final paper), are games with partial informa- 

tion. Thus, as long as the majority of the players is 

honest, all protocols may be correctly played. Actu- 

ally, slightly more strongly, the correct way to play 

a game can be found in a uniform manner. 
Namely, we exhibit a specific, efficient algorithm 

that, on input a protocol problem, outputs an 

efficient, distributed protocol for solving it. 

It should be noticed that, before this, only an 

handful of multi-party protocol problems were 

given a satisfactory solution (e.g. collective coin 

flipping and poker over the telephone, secret 

exchange, voting, and a few others). Moreover the 
security of some of these solutions crucially 

depended o:n the “trap-doorness” of specific func- 

tions satisfying some additional, convenient pro- 

perty (e.g. multiplicativity). By contrast, our com- 

pleteness theorem is proved based on any trap-door 

function (multiplicative or not, associative or not, 

etc.). That is, we prove that, if public-key cryptog- 

raphy is possible at all, then all protocols problems 

are (automatically!) solvable if more than half of 

the players are honest. 

7. Recent Developments 

Recently, Haber and Micah found a Tm-game 

solver that is algorithmically much simpler (for 
228 instance it does not use Barrington’s straightrline 



programs) but more difficult to prove correct. Also, 

Goldreich and Vainish found a simpler solution 
based on a specific assumption, the computational 
difficulty of quadratic residuosity. 
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