
Extracting Witnesses from Proofs of Knowledge

in the Random Oracle Model

Jens Groth

Cryptomathic∗ and BRICS, Aarhus University†

Abstract

We prove that a 3-move interactive proof system with the special

soundness property made non-interactive by applying the Fiat-Shamir

heuristic is almost a non-interactive proof of knowledge in the random

oracle model. In an application of the result we demonstrate that the

Damg̊ard-Jurik voting scheme based on homomorphic threshold encryp-

tion is secure against a nonadaptive adversary according to Canetti’s def-

inition of multi-party computation security.

1 Introduction

We study security proofs for multi-party cryptographic protocols in the random
oracle model. In particular we look at the voting scheme of Damg̊ard and Jurik
[DJ01].

The random oracle model usually comes into protocol design when a hash-
function is used. This can lead to very efficient protocols. However, to prove
security one models the hash function as a random oracle. Such a proof is not
a real proof of security, but it is still better than no proof at all.

There are general multi-party computation protocols not using random ora-
cles [GMW87, CDN01]. For more specialized purposes such as threshold signa-
tures and cryptosystems random oracles have been used though, see for instance
[Sho00]. However, rigorous security proofs for voting schemes and multi-party
computation in general in the random oracle model seem to be missing.

A standard way of using a random oracle is to turn a 3-move interactive
proof into a non-interactive proof through the Fiat-Shamir heuristic. Such a
proof can be used for proving membership of a language. Often we need some-
thing stronger though, namely, we need to prove knowledge of a witness for
membership of a language. It is the latter case we concern ourselves with in
this paper.

∗Cryptomathic A/S (www.cryptomathic.com).
†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

1

Let us describe the setting in more detail. Assume we have a language LR

defined by some binary relation R, meaning that an element x belongs to LR if
and only if there is a witness w such that (x, w) ∈ R. In a 3-move protocol the
prover sends an initial message a, the verifier responds with a randomly chosen
challenge e, and the prover answers the challenge with a string z. On basis
of the conversation (x, a, e, z) the verifier decides whether to accept or reject
the proof of x ∈ LR. In the random oracle model such a proof can be made
non-interactive by using the random oracle answer to the query (x, a) as the
challenge e.

Most examples of 3-move proof protocols have a property known as special
soundness, i.e. from two different accepting conversations on the same initial
message (a, e, z) and (a, e′, z′) it is possible to extract a witness w for x ∈ LR.
By rewinding a prover to his state just after sending out a and replying with
different challenges it can be possible to gather the witness from the prover’s
outputs. This means that it is a proof of knowledge.

The problem is that this rewinding technique does not work in the random
oracle model. We could of course on one proof (x, a, e, z) try to rewind the
prover to the point where it queried (x, a), and give a different answer e′ to the
query hoping for a new proof (x, a, e′, z′) to be returned. However, this may
never happen! There is no guarantee that the prover will return a proof with
the same x and a.

We present a solution to this problem. We demonstrate that by controlling
the prover we can with high probability extract witnesses. More precisely we
show that it is possible to simulate any adversary making non-interactive proofs
from a 3-move special soundness proof protocol such that the output has the
same distribution, and additionally with high probability to supply witnesses
for the proofs in the output.

We note that while we do get arbitrarily high probability of extracting wit-
nesses, we do not achieve overwhelming probability of extracting witnesses. This
stems from the fact that the simulator depends on the extraction probability we
wish for. However, it appears that this weaker notion of a proof of knowledge
is sufficient in many cases!

We use our result to prove the security of the Damg̊ard-Jurik voting scheme
according to Canetti’s definition of secure multi-party computation [Can00].
To the best of our knowledge this is the first time a voting scheme has been
proven secure in this sense, and it implies almost directly that the scheme satisfy
standard properties required of voting schemes, such as robustness and privacy
for instance. We believe the proof technique is generally applicable in security
proofs of protocols. In particular we note that security of the El-Gamal based
voting scheme in [CGS97] can be shown in a quite similar way as we show the
security of the Damg̊ard-Jurik scheme.

Pointcheval and Stern [PS00] have looked at a related question in the context
of signature schemes in the random oracle model. These schemes are also based
on 3-move protocols as described above. The public key contains an x ∈ LR,
the private key is w such that (x, w) ∈ R, and a signature can be seen as a
proof of knowledge of w. One can prove such a scheme secure by proving that

2

forging a signature efficiently implies knowledge of w. This cannot happen with
significant probability if we assume w is infeasible to compute from x. Thus this
is similar to, but not the same, as the question we look at here. One difference
is that in our case, the adversary is free to choose the instance x he proves
knowledge for, while an adversary against the signature scheme has a harder
time since he must work with the x specified in the public key.

Finally we remark that the setting we work in is a bit more general than
standard 3-move proofs. We consider what we call proofs relative to a language
L. The proof system for LR works as a normal proof system if x also belongs to
some other language L, while there are no guarantees if x /∈ L. Setting L to be
the language of all finite strings returns us to the normal case where we simply
talk of a proof system for LR.

2 Preliminaries

We use a random oracle to model the behaviour of suitable hash-functions. Such
an oracle works like this: If the query has not been made before it returns a
random k-bit string. On the other hand, if the query has been made before it
simply returns the same string as it at the last identical query. Obviously, a
real life hash-function has a stronger relation between input and output but the
model captures certain wanted features of the hash-function such as one-wayness
and collision-freeness. As a heuristic method we can therefore prove a protocol
secure in the random oracle model and through this get some indication that
the protocol is secure also when using a real hash-function instead of a random
oracle. If an algorithm A has access to an oracle O we write AO to indicate
this.

All algorithms have 1k as input where k is the security parameter. We usually
do not write this explicitly. By saying that algorithms run in polynomial time
we mean that there is some polynomial in k bounding the time they run before
terminating. We denote the set of probabilistic polynomial time algorithms by
PPT . For a particular polynomial time algorithm A we let tA be a positive
integer such that ktA bounds the time used by A.

In this paper we work with multi-party protocols. We think of the parties
as being interactive Turing machines. To bound the time they use we consider
each of their invocations as an invocation of a PPT algorithm. This class of
probabilistic polynomial time interactive Turing machines we label ITM .

We use standard notation for experiments and probabilities of certain out-
comes from the experiments. Typically we give some additional inputs to the
algorithms involved in a particular experiment. These inputs are intended to
express the non-uniformity of the algorithms involved. By proper modifications
one can remove this non-uniformity. All results also hold in a uniform setting.
The additional inputs to the algorithms are always bounded by a polynomial in
the security parameter.

We shall work often with elements in the multiplicative group of integers
modulo some positive integer n. We assume that the elements of Z∗

n are repre-

3

sented in some suitable way. When putting emphasis on using an integer a in
{0, . . . , n− 1} to represent an element b ∈ Z∗

n we write a = b mod ns+1.

3 Proof systems and the Fiat-Shamir heuristic

3.1 3-move interactive proof systems for a language in an-

other language

An interactive proof system for a language LR is a protocol between two parties,
which we call respectively the prover and the verifier. The goal of the prover is
to convince the verifier that some string x, bounded by a suitable polynomial,
known to both parties represents an element in LR. Definitions of interactive
proof systems often use an unlimited prover, however, in this article we shall
always work with parties in the protocols running in polynomial time.

Let the language LR be defined by some relation R such that x ∈ LR if and
only if ∃w : R(x, w). If the relation R can be computed by some polynomial
time algorithm then this is a standard definition of an NP-language. Of course,
there may be several different relations defining the same language.

The minimum requirement of an interactive proof system for a language
LR is that it has both the completeness property and the soundness property.
Completeness says that if the prover and verifier both follow the protocol cor-
rectly and the prover knows some witness for x ∈ LR then the prover succeeds
in convincing the verifier that indeed x ∈ LR, i.e. make the verifier end the
protocol by signalling that he accepts the proof. Soundness on the other hand
says that when x /∈ LR then no matter how the prover behaves he is not able
to convince the verifier that x ∈ LR. By themselves these requirements are not
that interesting, for NP-languages the prover can just send the witness to the
verifier, but when making further demands on the proof system, such as it being
zero-knowledge, things start to get more complicated.

Our goal here is to generalize the notion of interactive proof systems for a
language LR to that of interactive proof systems for a language LR relative to a
language L. Since we just need 3-move interactive proofs in this paper we shall
limit the definitions to that particular case here. A protocol execution looks
like this: the prover sends an initial message a, the verifier responds with a
challenge e, and upon receiving an answer z from the prover the verifier outputs
1 if accepting and otherwise 0.

We define a quadruple of PPT-algorithms (P1, P2, V1, V2) to be an interactive
prof system for LR relative to L if the following requirements are satisfied:

Completeness

∀δ > 0∃K∀k > K∀x, w : x ∈ L ∧ R(x, w) ⇒

P ((a, s)← P1(x, w); (e, t) ← V1(x, a); z ← P2(e, s) :

V2(x, i, e, z, t) = 1) > 1−
1

kδ

4

Soundness

∀A1, A2 ∈ PPT∀δ > 0∃K∀k > K∀x, u : x ∈ L ∧ x /∈ LR ⇒

P ((a, s)← A1(x, u); (e, t)← V1(x, a); z ← A2(e, s) :

V2(x, a, e, z, t) = 1) <
1

kδ

We think of s and t as containing the states of respectively the prover and the
verifier during the execution. Without loss of generality, we shall imagine that
they contain the entire history of the execution of the party, including used
random bits.

We shall be interested in two additional properties of an interactive proof
system for a language relative to another language. One of them, special sound-
ness, captures the fact that if the prover can make acceptable answers to two
different challenges then we get hold of a witness. This can be thought of as a
strong version of an interactive proof of knowledge system since if the prover’s
answers yield a witness then the prover is in a sense in possession of a witness.
The witness can be extracted from the two proofs using an extraction algorithm
E.

Special Soundness

∃E ∈ PPT∀δ > 0∃K∀k > K∀x, w : x ∈ L ∧ R(x, w)⇒

P ((a, s)← P1(x, w); (e, t), (e′, t′)← V1(x, a); z ← P2(e, s);

z′ ← P2(e
′, s) : R(x, E(x, a, e, e′, z, z′, t, t′))) > 1−

1

kδ

The other property we shall be interested in, is honest verifier zero-know-
ledge. If the verifier behaves according to the protocol, he shall not be able to
gain any extra knowledge by interacting with the prover. This can be captured
by saying that there is a simulator that outputs a string (a, e, z, t) with a distri-
bution indistinguishable from that of the initial message, challenge and answer
produced in a real interaction between an honest prover and verifier.

Honest Verifier Zero-Knowledge

∃S ∈ PPT∀D∀δ > 0∃K∀k > K∀x, w, u : x ∈ L ∧ R(x, w) = 1⇒

P ((a, s)← P1(x, w); (e, t) ← V1(x, a); z ← P2(e, s) : D(x, a, e, z, t, u) = 1)

−P ((a, e, z, t)← S(x) : D(x, a, e, z, t, u) = 1) <
1

kδ

3.2 Using a random oracle to make a proof non-interactive

Having made these general definitions we restrict ourselves in the remains of this
paper to the case where the verifier picks the challenge completely at random.
Under this restriction the state information t does not hold any useful knowledge
for the verifier and we can therefore simply let it be the empty string in the above
definitions. All proof systems we know of have this property.

5

From the definitions above it is not clear what powers an adversary has when
given an element x ∈ L ∩ LR. We want to avoid a situation where the verifier
on a particular proof can respond in two ways, i.e. has a significant probability
of both accepting and rejecting. For the remains of this paper we therefore only
consider proof systems where the verifier on any element and proof either accepts
with overwhelming probability, or rejects with overwhelming probability. Most
known examples of proof systems have this property, and in particular it is the
case for those proof systems where the second part of the verifier is deterministic.

In the random oracle model it is now possible to transform a 3-move inter-
active proof system for language LR relative to L, which satisfies the special
honest verifier zero-knowledge property into a non-interactive zero-knowledge
proof system for language LR relative to L. The trick is simply to replace the
verifiers challenge with the random oracle value taken on the initial message pro-
duced by the prover, or more precisely the oracle value on the initial message a,
the string in question x and possibly some auxiliary information such as an ID
of the prover. The verifier’s role is now reduced to check that indeed the chal-
lenge is correctly made according to the oracle and whether the resulting proof
is acceptable. The resulting proof system has the following three properties:

Completeness

∀A ∈ PPT∀δ > 0∃K∀k > K∀u :

P ((x, w)← AO(u); (a, e, z)← PO(x, w) :

x ∈ L ∧R(x, w) ⇒ V O(x, a, e, z) = 1) > 1−
1

kδ

Soundness

∀A ∈ PPT∀δ > 0∃K∀k > K∀u :

P ((x, a, e, z)← AO(u) : x ∈ L \ LR ∧ V O(x, a, e, z) = 1) <
1

kδ

Zero-knowledge

∃S ∈ PPT∀A, D ∈ PPT∀δ > 0∃K∀k > K∀u :

P ((x, w, v) ← AO(u); (a, e, z)← PO(x, w) :

x ∈ L ∧R(x, w) ⇒ DO(x, a, e, z, v) = 1)

−P ((x, w, v)← AO(u); (a, e, z)← S(x) :

x ∈ L ∧R(x, w) ⇒ DO′

(x, a, e, z, v) = 1) <
1

kδ

where O′ is the oracle O modified such that on the query (x, a, aux), which is
used by the verifier to check that the challenge has been correctly formed, it
returns e as the answer. We assume furthermore in the zero-knowledge definition
that the space of possible initial messages is sufficiently large such that the
A algorithm only has negligible probability of having queried the same initial
message a as the one produced by P .

6

Note that the element-witness pairs (x, w) are created by an algorithm A
with access to the random oracle. This differs from the standard interactive
definition in which one simply quantifies over all element-witness pairs instead
of just a single string u. The reason for this choice is that we want to capture the
relation the element-witness pair may have with the random oracle in question.1

The method described above is often used in connection with the Fiat-Shamir
heuristic in which one replaces the challenge in an interactive proof with a hash
value of the initial message and the common element in question. Assuming
that the hash function works like a random oracle one gets this kind of non-
interactive proof system.

3.3 A useful lemma

Imagine we have an interactive proof system for language LR relative to L, which
uses random challenges of suitable length, and which has the special soundness
property. Suppose furthermore that for each x ∈ L there can be at most one
witness w such that R(x, w). In that case the resulting non-interactive proof
system we get in the random oracle model satisfies Lemma 1 stated below.

The idea in the lemma is the following. We consider an algorithm producing
some elements in L and some relative proofs that x ∈ LR. We find that one
could substitute this algorithm with a simulator that produces the same kind of
output as the original algorithm, but in addition provides the witnesses for the
elements belonging to LR. By choosing a proper simulator we can make any
distinguisher’s chance of differentiating between the two scenarios arbitrarily
small. If we think of the particular algorithm as part of a larger protocol the
lemma says that the simulator can be chosen such that no matter which protocol
we immerse the algorithm the final outputs of the protocol with respectively the
algorithm and the distinguisher are virtually indistinguishable.

If x ∈ LR let W (x) be the witness such that R(x, W (x)), else let W (x) =⊥.
We have

Lemma 1

∀α > 0∀A ∈ PPT∃S ∈ PPT∀B, D ∈ PPT∃K∀k > K∀z :

|P ((s, t)← BO(z); ((x1, p1), . . . , (xl, pl), u)← AO(s) :

x1, . . . , xl ∈ L ∧ OB ∩ OA = ∅

⇒ DO(t, u, (x1, p1, W (x1)), . . . , (xl, pl, W (xl))) = 1)

−P ((s, t)← BO(z); ((x1, p1, w1), . . . , (xl, pl, wl), u)← SO(s) :

x1, . . . , xl ∈ L ∧ OB ∩ OS = ∅

⇒ DO(t, u, (x1, p1, w1), . . . , (xl, pl, wl)) = 1)| <
1

kα
,

where OB denotes the set of queries made by B, while OA and OS denote the
sets of queries made by the respective algorithms to the random oracle as well as

1Note also that a simple deletion of u transforms the formulas into a uniform setting.

7

the queries used in the proofs. And where we demand that the proofs p1, . . . , pl

produced by A are valid.
Furthermore, the algorithm S can be uniquely determined from A, tA, α and

an extractor E. We write SA,α when we want to emphasize this.

We note that there are some limitations in the lemma above. First of all,
albeit the probability of differentiating between the two scenarios can be made
arbitrarily small, it is not negligible. Second we note that the algorithm may
not ask oracle queries already made previously in the protocol, neither use these
queries directly in the proofs. The reason for these restrictions stem from the
fact that the simulator we present simply runs A several times giving it different
oracle answers, trying to make it make two different proofs for the same element.
This will fail if A can somehow use a premade proof made by B, and it will
fail if A can somehow from the information from B detect that it is not getting
correct oracle answers.

Proof. The idea is the following: The simulator S runs a copy of A answering
oracle queries using the random oracle. A produces elements x1, . . . , xl, proofs
p1, . . . , pl and some extra output u. This is the output that S will use, however,
the simulator needs to find corresponding witnesses to the valid proofs.

Call this execution of A for the main copy of A. In addition, whenever the
main copy makes an oracle query q, S runs many extra copies of A from the
state A was in at the time it made the query. In the extra copies oracle queries
are answered at random by S instead of using the random oracle. This way
the extra copies of A get answers on q that differ from the real random oracles
answer on q.

Looking at a situation where A has just made an oracle query q there are
two possibilities: There is a low probability that the answer is used by A in a
proof in the end, and in that case we do not need to worry about it because it
probably does not appear in the main execution. Alternatively there could be
a high probability that it is used by A in a valid proof, in which case we can
hope that one of the many extra copies also results in it being used in a valid
proof. In this case, since the query answers are different in the extra copies, we
end up with two proofs using two different challenges but with the same initial
message. By the special soundness property of the original 3-move interactive
proof system we can extract a witness from the proofs if the query is used in
the main execution too. This way we have witnesses w1, . . . , wl to pass along
with the main executions output, and of course the distribution of xi’s and pi’s
is completely identical to that of a real execution of A.

Let us specify in details how S acts on input s. Along the way S maintains
some sets or lists keeping track of information pertaining to the oracle queries
it makes.

S on input s.

Set O = ∅.
Run A on s handling oracle queries and halting as below.

8

If A makes an oracle query q do:
Save the entire state of A.

Set Oq = ∅.
For j = 1 to kdtA+α+1e do:

Select at random a string e′ of suitable length.
Run A from the saved state, answering the query q with e′,
and answering subsequent oracle queries at random.
Check in the resulting output ((x′

1, p
′
1), . . . , (x

′
l′ , p

′
l′), u

′)
whether q and e′ have been used in a pair (x′, p′).
In that case if the proof is valid let Oq = {(e′, x′, p′)}.

Query the random oracle for an answer e to q.
Let O = O ∪ (q, e).
Continue the run of A from the saved state and with answer e to
its query.

If A terminates outputting ((x1, p1), . . . , (xl, pl), u) do:
For j = 1 to l do:

Check whether Oqj
6= ∅.

In that case set wj = E(xj , a, e, e′, z, z′) where a is the initial
message in the proof, e, e′ are the respective oracle answers in
the main copy of A and in Oqj

, and z, z′ are the answers
completing the proofs.
If any of these two checks failed set wj =⊥.

Output ((x1, p1, w1), . . . , (xl, pl, wl), u) and halt.

The argument for this S being the kind of simulator we seeking goes like this:
Look at a situation where A has just made an oracle query. We are interested
in the probability of A putting the oracle answer to good use in the end, i.e. its
output includes an element x ∈ L and a valid proof p for x ∈ LR. We have two
situations, one where this probability is less than or equal to 1

2ktA+α and one

where it is above 1
2ktA+α .

Since A can make no more than ktA queries the probability of any of the
oracle queries with less than or equal to 1

2ktA+α probability of being used, is

actually used is less than 1
2kα .

We can therefore assume that only oracle queries with usage probability
larger than 1

2ktA+α is used in the proofs for elements x ∈ L in the final output

of the main copy of A. However, since we ran kdtA+α+1e copies of A from this
situation, we thus have more than 1 − e−k chance of the same oracle query
having been used in a valid proof in one of the extra copies of A. In this case,
according to the special soundness we can extract a witness with overwhelming
probability.

It is obvious that the distribution of elements x1, . . . , xl and proofs
p1, . . . , pl from algorithms A and S respectively is completely identical. More-

9

over, from the argument above we have that with probability higher than 1− 1
kα

S also passes along witnesses w1, . . . , wl that match W (x1), . . . , W (xl) for all of
the x1, . . . , xl belonging to L. This covers the main part of the lemma.

To conclude the proof we note that S described here is based on A, tA, α
and an extractor E. If we fix E for the interactive proof system we thus get a
standard simulator SA,α that fits the lemma. �

We remark that a slight modification of the above proof also demonstrates
the truth of Lemma 1 where the 3-move interactive proof system does not have
the special soundness property but instead a more relaxed condition is satisfied:
getting at least a polynomial number of different proofs based on he same initial
message one can compute a witness.

Another possible relaxation of the special soundness criterion is one where
we are only interested in some partial information about the witness w. In
that case it is sufficient that the extractor in the special soundness definition
extract this partial information from the witness, i.e. some function value f(w)
is computed rather than the entire witness.

4 Damg̊ard-Jurik voting

We present the first example of a 3-move interactive proof system. It will be
used in a threshold version of a generalization of Paillier’s cryptosystem.

4.1 Equality of discrete logarithms proof

Let L be the language of sextuples (n, s, u, u′, v, v′) such that n is a product of
two large safe primes p = 2p′ + 1, q′ = 2q′ + 1, such that s is a small positive
integer, and such that u, u′, v, v′ are squares in Z∗

ns+1 with v being a genera-
tor for the group of squares. Let furthermore R be the relation that on input
((n, s, v, v′, u, u′), y) is true if and only if n, s ∈ Z+ ∧ v, v′, u, u′ ∈ Z∗

ns+1 ∧ v′ ≡
vy mod ns+1 ∧ u′ ≡ uy mod ns+1. Finally let t be some secondary security pa-
rameter such that 2t < p′, q′ (If we wish to continue working with only one
security parameter we can let the size of t depend on k, say t = dk/3e). We
present a 3-move honest verifier zero-knowledge interactive proof system with
the special soundness property for LR relative to L.

3-move interactive proof system for LR relative to L
Input: n, s, u, u′, v, v′.
Private input for the prover: y such that R((n, s, u, u′, v, v′), y).

1. The prover selects an (s + 1)k + 2t-bit number r at random. It sends
a = ur mod ns+1 and b = vr mod ns+1 to the verifier.

2. The verifier sends a random a t-bit challenge e to the prover.

3. The prover answers the challenge by sending z = r + ey to the verifier.

10

4. The verifier accepts if and only if uz ≡ av′e mod ns+1 and vz ≡ bv′e mod
ns+1.

Using the Fiat-Shamir heuristic this can be made a non-interactive zero-know-
ledge proof system for LR in L in the random oracle model. Note that in the
non-interactive proof the verifier acts deterministically, and therefore anybody
verifying the proof will agree on whether it is acceptable or not.

4.2 Threshold generalized Paillier encryption

We present the (ω, N)-threshold generalized Paillier encryption scheme from
[DJ01]. It uses a (small) positive integer s as a parameter to describe how long
ciphertexts we allow.

Key Generation

Input: s.

Generate a k-bit integer n = pq, where p and q are large safe primes, i.e.
p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ are also primes. Choose
d ∈ {1, . . . , nsp′q′} such that d ≡ 0 mod p′q′ and d ≡ 1 mod ns.

This d is the secret key of the encryption scheme. Since we want a thresh-
old encryption scheme we secret share it amongst the authorities. Select
a polynomial f(X) =

∑ω−1
i=0 aiX

i mod nsp′q′ at random by setting a0 = d
and picking a1, . . . , aω−1 at random from {0, . . . , nsp′q′ − 1}. Note that
f(0) = d. The shares are s1 = f(1), . . . , sN = f(N).

We want to enable each authority to prove that he has used the cor-
rect share when decrypting. This is done using the equality of discrete
logarithms proof presented before. To set up the possibility of such a
proof we choose at random a square v in Z∗

ns+1 and let v1 = v∆s1 mod
ns+1, . . . , vN = v∆sN mod ns+1, where ∆ = N !.

The public key is now pk = (n, s, v, v1, . . . , vN) while the private keys are
s1, . . . , sN .

Encryption

Input: Public key pk and plaintext m ∈ Zns .

Select at random r ∈ Z∗
n and let the ciphertext be given by c = (1 +

n)mrns

mod ns+1.

Decryption

Input: Public key pk, ciphertext c = (1 + n)mrns

mod ns+1, and secret
keys s1, . . . , sN known to the respective authorities.

Each authority computes ci = c2∆si and proves non-interactively that
logv(vi) ≡ logc4(c2

i) mod φ(ns+1) using the non-interactive version of the
proof of equality of discrete logarithms protocol mentioned before. Both
the share of the decryption and the proof of it having been correctly formed
are published on the message board.

11

Using Lagrange interpolation ω correct shares enables us to decrypt the
ciphertext. Let T be the set of the first ω shares with valid proofs and
compute

c′ =
∏

i∈T

c
2λ0,i

i ≡ c
∑

i∈T 4∆siλ
T
0,i ≡ c4d∆2

≡ (1 + n)m4d∆2

mod ns+1

where λT
0,i = ∆

∏
i′∈T\i

−i
i−i′

.

From this we can retrieve m using the technique from [DJ01].

An important property of this encryption scheme is that it is homomor-
phic. Given two ciphertexts c1 and c2 encrypting m1 and m2 one can obtain a
ciphertext c3 = c1c2 mod ns+1 encrypting m1 + m2 mod ns.

The encryption is shown in [DJ01] to be semantically secure provided the
Decisional Composite Residuosity Assumption described below holds for prod-
ucts of safe primes.

Decisional Composite Residuosity Assumption

Choose n at random among the k-bit integers that are products of two large
primes. The distribution of rn mod n2 where r is chosen at random from Z∗

n is
computationally indistinguishable from the uniform distribution on Z∗

n2 .

4.3 Encryption of 0 or 1 proof

We will later look at votes being 0 or 1 and will therefore need a non-interactive
proof system for a ciphertext c encrypting 0 or a 1. More precisely let L be
the language of pairs (pk, c) where pk is a public key chosen as above, and
where c ∈ Z∗

ns+1 . Moreover, let R be a relation computable in polynomial

time such that R((pk, c), r) if and only if r ∈ Z∗
n and c = rns

mod ns+1 ∨ c =
(1 + n)rns

mod ns+1. We seek a non-interactive zero-knowledge proof for LR

in L. This can be obtained in the random oracle model using the Fiat-Shamir
heuristic on the proof system below.

3-move interactive proof system for LR relative to L
Input: Public key pk chosen as above, ciphertext c ∈ Z∗

ns+1 , and a secondary
security parameter t such that 2t < p′, q′.
Private input for the prover: r ∈ Z∗

N such that R((pk, c), r).

1. Let c0 ≡ c mod ns+1 and c1 ≡ (1 + n)−1c mod ns+1. Let b be the bit
such that cb is an encryption of 0. The prover starts by choosing zb̄ ←

Z∗
n, eb̄ ← {0, . . . , 2t − 1} and setting ab̄ = zns

b̄
c
−eb̄

b̄
mod ns+1. Together

(ab̄, eb̄, zb̄) constitute a simulated proof for cb̄ being an encryption of 0.
Next the prover selects r′ ← Z∗

n and sets ab = rns

mod ns+1. The prover
now sends (a0, a1) to the verifier.

2. The verifier selects at random a non-negative integer ε less than 2t and
returns this challenge to the prover.

12

3. The prover sets eb = ε − eb̄ mod 2t and lets zb ≡ r′re
b mod n. (ab, eb, zb)

constitute a real proof that cb is an encryption of 0. The prover answers
the challenge by sending (e0, e1, z0, z1) to the verifier.

4. The verifier accepts if and only if zns

0 ≡ a0c
e0

0 mod ns+1, zns

1 ≡ a1c
e1

1 mod
ns+1 and ε = e0 + e1 mod 2t.

This proof system has the special soundness property and is honest verifier
zero-knowledge. Note that in the non-interactive version, the verifier acts de-
terministically and therefore anybody will agree on whether to accept or reject
the proof.

4.4 The voting scheme

Threshold generalized Paillier encryption can be used in a voting scheme. For
simplicity, we describe here a version where voters can only vote yes or no. A
voter votes yes or no by posting respectively an encryption of 1 or 0 on the mes-
sage board. Taking advantage of the homomorphic property of cryptosystem,
the authorities obtain an encryption of the entire result by multiplying all the
individual votes together. Now they jointly decrypt this to get the final tally.
To avoid a voter encrypting illegal votes we demand that along with the vote he
also publishes a proof as described above that the vote is an encryption of 0 or 1.

The voting scheme

Parties There are three types of parties: M voters V1, . . . , VM , N authorities
A1, . . . , AN , and Q independent verifiers P1. . . . , PQ. The voters start with
inputs x1, . . . , xM , which are the votes that they intend to cast.

Key Setup We assume that security parameters k and t as well as a suitable
size parameter s have been selected in advance. Now generate keys for
threshold generalized Paillier encryption: The public key
(n, s, v, v1, . . . , vN) is published at the message board for all to see. The
shares for the private key, s1, . . . , sN are given secretly to the correspond-
ing authorities A1, . . . , AN .

Voting Each voter encrypts his vote and attaches a proof that it encrypts 0 or
1. The resulting vote consisting of ciphertext and proof is published on
the message board.

Tallying Each authority reads the posts on the message board submitted by
the voters, and checks for each voter that he has only posted one ciphertext
belonging to Z∗

ns+1 and that it is accompanied by a valid proof of being
an encryption of either 0 or 1. It notes the number of valid votes, and it
calculates the product of the ciphertexts in the valid votes. The number
of voters as well as the resulting product of ciphertexts, c, is published on
the message board.

13

Now each authority computes its share of the decryption of the result by
letting ci = c2∆si mod ns+1. This share is also posted on the message
board together with a proof that logc2(c4

i) ≡ logv(vi) mod φ(n).

Having completed these two steps all authorities now find the first ω au-
thorities who have posted a decryption share ci together with a valid
proof of it being legal. Using these shares each authority now decrypts
the product of the ciphertexts, c, to get the result of the election.

The authorities post the result of the election on the message board. Fi-
nally, from the message board all parties read off the result as the majority
decision of the authorities and output this. The result consists of the num-
ber of valid votes and the number of yes votes.

The voting scheme can be extended to accommodate elections with more
than two choices. For the purpose of this paper, however, it suffices to over
only the simple case with two choices. The more general case is treated quite
similarly.

5 Security of the Voting Scheme

We compare the voting scheme with an ideal process. In the ideal process, each
voter hands his vote to a trusted party over a secure channel. After that the
trusted party tallies the votes and sends the result to each party. We demon-
strate that for any nonadaptive adversary attacking the voting scheme there
exists a simulator in the ideal process model such that the results and outputs
of the adversary, respectively simulator, are indistinguishable. This shows that
the voting protocol is secure according to the multi-party computation security
definition in [Can00].

Before formulating the above in a precise theorem, we clarify the model in
which we are working. We imagine there is an adversary able to corrupt up
to ω − 1 authorities and as many voters and independent verifiers as he wants
to. Without reducing the adversary’s strength we may assume that these are
corrupted from the start of the protocol and that the adversary simply gets
a list of corrupted parties as input from the start. The corrupted parties are
completely under the adversary’s control, he gains all information they get dur-
ing the execution of the protocol, and they output messages at his whim. In
addition, the adversary may get some auxiliary input from the start, intuitively
representing information he may have gained by corrupting parties and infor-
mation he may have gathered from secondary resources. The only disadvantage
he has is that the corrupted parties are fixed and cannot be changed during the
protocol execution.

We have the following model of the network in which the election takes place:

Insecure channels The adversary sees all communication between the parties.

Identity Each party has a unique ID number known to all parties.

14

Authentication Each message sent on the network come together with a tag,
which identifies the sender. It is a convenience to assume that the network
is authenticated but there is no loss of generality in doing so. We refer
the reader to for instance [BCK98] for information on how to authenticate
networks in a modular way fitting with the framework we present here.

Non-blocking All messages sent arrive at the intended receiver, the adversary
cannot stop messages from arriving.

Synchronous Execution of protocols is divided into rounds. During a round
each party is activated once, and during this activation it will be able
to send messages to other parties. After its activation the party is not
activated again until next round. Control passes onto another party.

Rushing The adversary determines when to activate parties within each round.
In particular it can let all corrupted parties wait until the end of the round
thereby potentially getting an advantage by knowing the messages sent by
uncorrupted parties before taking any action itself.

To describe security of a protocol we compare two scenarios:
In the first scenario called the real life model the protocol is conducted as

normal with the adversary possibly corrupting some parties. The goal of the
adversary is to alter the output of honest parties or to gather some knowledge,
which was supposed to be inaccessible.

The second scenario is called the ideal process. In this process, we can think
of the parties as handing their inputs to the protocol to a trusted party over
secure channels. The trusted party figures out what should be the result of the
protocol and answers each party. Each party simply outputs this answer as his
final output in the protocol. The adversary can still corrupt parties before the
evaluation altering some parties’ input to the trusted party. Moreover, it can
still alter corrupted parties’ output after the secure evaluation. However, the
core of the protocol computation made by the trusted party remains impossible
to attack.

We say that a protocol is secure if for any adversary conducting an attack
in the real life model there is an adversary attacking the ideal process such that
the combined outputs of the honest parties and the adversary in the respective
two scenarios are indistinguishable.

One advantage of this definition of security is that it is allows modular
composition. If some sub-protocol can be proven secure, one can replace this
part of the protocol with an ideal process. The resulting main protocol’s security
properties remain unchanged under this substitution.

We shall see that the voting scheme presented in this paper is secure. In
other words, we compare the following two experiments:

Real life experiment

Each voter V1, . . . , VM start out with a choice x1, . . . , xM of the vote he wants
to cast. The adversary starts out with a set of corrupted voters, less than

15

ω corrupted authorities, and some corrupted independent verifiers plus some
string z.

1. Election keys are generated. The public key (n, s, v, v1, . . . , vN) is placed
on the message board. Shares s1, . . . , sN of the private key d are given to
the respective authorities.

2. Each honest voter computes his vote and posts it on the message board.
The adversary selects the messages of the corrupted voters to be posted
on the message board.

3. The honest authorities calculate the product c of the valid votes, their
shares for decrypting c along with proofs that the shares are correct, and
publish all this on the message board.
The adversary algorithm may decide on some messages to be posted by
the corrupted authorities.

4. Each honest authority computes from the first ω valid shares the result of
the election and posts it on the message board.

5. Each honest party outputs the result.
The adversary makes some output of his choice.

In the experiment described above the adversary is only allowed to take
some specific actions at certain times. However, it would not make the adver-
sary stronger to allow it further freedom in its choices so there is no loss of
generality in this restriction.

Ideal process experiment

Again each voter starts out with a choice, and the adversary S starts out with
a set of corrupted parties and a string z. We shall from now on call S for the
simulator since it will simulate a real life model adversary A. We describe S
along the way.

1. S runs the key generation protocol for the threshold version of generalized
Paillier encryption. During the key generation S learns the secret key
d and is therefore able to decrypt messages in the following part of the
experiment.

2. S does not know the choices of the honest voters, but makes a random
choice, 0 or 1. These choices are encrypted to produce real votes, which
are given to A as if they were posted on the message board.
A is invoked as had it seen the public key (n, s, v, v1, . . . , vN) on the mes-
sage board, some secret key shares si with corrupted authorities, the votes
made by honest voters on the message board, and as had it started out
with the string z. A decides whether to post some messages for corrupted
voters on the message board. Those of the messages corresponding to valid
votes are decrypted by S. S changes the input of the corrupted voters to
be those choices, while corrupted voters for which A submits invalid votes
are instructed not to submit votes to the trusted party.

16

3. The trusted party now receives the votes and sends the tally to all parties.
S learns the result from one of the corrupted parties2 .

4. Let m be the real result and let m′ be the result from the random choices
selected by S and the votes made by A. In order to continue the simulation
S must trick A to believe that the product of valid votes decrypt to m
where in reality they decrypt to m′. For this purpose we choose d′ in
{0, . . . , nsp′q′ − 1} such that d′ ≡ 0 mod p′q′ and d′ ≡ (m

m′) mod ns. Now
secret key shares s′1, . . . , s

′
N for d′ are selected such that they fit with the

shares, si’s, that A already knows, and such that the polynomial intersects
d′ in 0. With these shares S produces for honest authorities shares ci =
c2∆s′

i mod ns+1 and simulates proofs for logc4(c2
i) ≡ logv(vi) mod φ(ns+1).

This simulation can be done because S controls the random oracle seen
by the simulated A. S can just select values at random when making up
the random oracle’s responses.
Once again A is enacted and produces messages on behalf of the corrupted
authorities.

5. We see that the ω first valid shares ci give

c′ =
∏

i∈S\i c
2λS

0,i

i mod ns+1

≡ c
∑

i∈S\i 4∆s′
iλ

S
0,i mod ns+1

≡ c4∆2d′

mod ns+1 ≡ (1 + n)4∆
2i mod ns+1,

which means that the “shares” of c′ combine to the result i.
A is given the result and produces its final output.

We wish to demonstrate that the distribution of the pairs of the result and
the output of the adversary in the real life model is indistinguishable from the
result and output of the simulator in the ideal process model. In other words,
we want to demonstrate:

Theorem 1

∀A ∈ ITM∃S ∈ ITM∀D ∈ PPT∀δ > 0∃K∀k > K∀x1, . . . , xM ∈ {0, 1}∀z :

P ((result, output)← ExpRLM,AO(x1, . . . , xM , z) :

DO(result, output) = 1)

−P ((result, output)← ExpIP,SO (x1, . . . , xM , z) :

DO′

(result, output) = 1) <
1

kδ
.

where O′ is O modified such that it fits with the oracle answers made by S when
simulating proofs.

2We assume there is at least one corrupted party. Otherwise, security is obvious.

17

Proof. Let us first look at the real life model experiment and modify it into
another experiment ExpRLM ′,AO , which is indistinguishable from ExpRLM,AO

3.
The correctness of the decryption shares made by the honest authorities is

demonstrated by equality of logarithms proofs, which are non-interactive zero-
knowledge proofs in the random oracle model. Modifying the random oracle
correspondingly we can therefore simulate the proofs of the honest authorities
producing the correct decryption shares.

The elements v, v1, . . . , vN used to demonstrate the correctness of the de-
cryption shares can be created without knowledge of the decryption key d in
the following way: Select for ω − 1 authorities, including the corrupted author-

ities, at random elements si ∈ {0, . . . , bns+1

4 c}. This is indistinguishable from
choosing them at random in {0, . . . , nsp′q′}. Select a square v such that it has
a known plaintext, i.e. v = (1 + n)mr2ns

mod ns+1. Let s0 = d. Now, even
though we do not know d, we do know that vd ≡ (1 + n)m mod ns+1. Let T be
the set of the ω indices {0, i1, . . . , iω−1}, and let

λT
j,i = ∆

∏

i′∈T\i

j − i

i− i′

then the remaining vj ’s can be computed as

vj =
∏

i∈T

(vsi)λT
j,i mod ns+1.

This gives us v, v1, . . . , vN distributed the right way without having used d to
compute them.

The proofs for validity of the votes for the honest voters can also be simulated
without changing the result-output distribution of the experiment distinguish-
ably.

Finally the decryption shares for the honest authorities can be constructed
from the result m of the election instead without using their shares of the secret
key. This is done in a similar way as v, v1, . . . , vN were made above, using the
same selection of si’s and T . Even though we do not know d we do know that
c2s0 = (1 + n)2m mod ns+1. For j’s not in T we can therefore compute shares
as

cj =
∏

i∈T

(c2si)λT
j,i mod ns+1.

We let the experiment ExpRLM ′,AO be ExpRLM,AO modified in this manner.
We shift our attention to the ideal process. Here we modify S into S ′ such

that ExpIP,SO is indistinguishable from ExpIP,S′O . The decryption shares cor-
rectness is already simulated. The elements v, v1, . . . , vN can be simulated with-
out knowing d as mentioned before when we modified the real life model. Fur-
thermore, also in this model we can simulate the proofs of correctness of the

3To reduce notation a little we do not write the inputs (x1, . . . , xM , z) to the experiments

18

votes for the honest voters. Finally, we can compute the shares from the result
as described before, this time just pretending that c2s0 = (1 + n)2m mod ns+1.

It is immediately clear that the results in ExpRLM ′,AO and ExpIP,S′O are
indistinguishably distributed. We still need to argue that the outputs of the
adversaries look the same though.

The modifications to the two models make them very similar. Keys are gen-
erated the same way, votes are generated the same way, the decryption process
works the same way and the decryption shares are calculated the same way.
The difference between ExpRLM ′,AO and ExpIP,S′O is that in the ideal process
the encrypted votes seen by the adversary do not add up to the result. We want
to use the semantic security of the underlying cryptosystem to demonstrate
that the outputs of the adversary A in the two models are indistinguishable.
However, this cannot be done directly since the result contains information con-
cerning what is encrypted in the votes made by the adversary, information that
could normally only be gathered using the decryption key. Therefore we would
need the cryptosystem to be non-malleable to make such an argument, and the
notion of non-malleability is stronger than the notion of semantic security.

Instead, imagine there was some non-negligible difference between the two
modified experiments. Say

∃D ∈ PPT∃β > 0∀K∃k > K∃x1, . . . , xM ∈ {0, 1}, z :

P ((result, output)← ExpRLM ′ ,AO : DO′

(result, output) = 1)

−P ((result, output)← ExpIP,S′ : DO′

(result, output) = 1) >
3

kβ

where O′ is O′ modified such that it fits with the simulated proofs produced in
the two experiments.

We note that the part of A producing votes and proofs for validity of those
votes cannot use queries made previously in the protocol. They are all used in
proofs and thus posted on the message board, so there is no reason to ask the or-
acle about them again. And if it copied proofs directly it runs into the problem
that the queries contain the identity of the voters, and therefore they cannot be
used for the corrupted voters. Therefore, according to Lemma 1 we can choose
a simulator SA,β for the part of A producing votes such that in addition to the
proofs of validity of the votes there are accompanying witnesses for the votes
being valid. Those witnesses, the randomness involved in the encryptions, can
be used to reveal the underlying yes or no choices in the valid votes produced
by the adversary. If we call the modified real life experiment where the simu-
lator is to produce the votes instead of A for ExpRLM ′ ,AO[SA,β] we get that no
distinguisher has a higher chance of differentiating between ExpRLM ′,AO[SA,β]

and ExpRLM ′,AO than 1
kβ .

The exact same simulator SA,β can also be used in connection with the ideal
process model. Here we modify S ′ such that it runs SA,β instead of A when
making votes and proofs of validity of the votes. Now, instead of decrypting the
valid votes to figure out what the content is, it can use the witnesses to figure
that out. Calling this experiment for ExpIP,S′O [SA,β] we have from Lemma 1

19

that the advantage of any distinguisher trying to distinguish ExpIP,S′O [SA,β]

and ExpIP,S′O is less than 1
kβ .

Because we are using the witnesses to extract the contents of the votes
made by A we do not at all need to use the decryption key d. The result
can be computed using only the witnesses. We now have that it is possible to
distinguish the two experiments ExpIP,S′O [SA,β] and ExpRLM ′ ,AO[SA,β] with an

advantage of at least 1
kβ . However, this contradicts the semantic security of the

underlying cryptosystem saying that the advantage should be negligible. �

We made this proof just in the case where votes are represented as 0 or 1.
Damg̊ard and Jurik’s article generalize this to the case where one can vote for
t out of L choices. We note that the proof generalizes also to this scenario with
virtually the same arguments.

6 Acknowledgments

We would like to thank Ivan Damg̊ard for suggesting the possibility of the voting
scheme being secure according to Canetti’s definition and for useful discussions.

References

[BCK98] M. Bellare, R. Canetti, and H. Krawczyk. Modular approach to the
design and analysis of key exchange protocols. In proceedings of the
30th Annual ACM Symposium on Theory of Computing (STOC-98)
(New York, May 23–26 1998), pages 419–428, 1998.

[Can00] R. Canetti. Security and composition of multi-party cryptographic
protocols. Journal of Cryptology, 13(1):143–202, 2000.

[CDN01] R. Cramer, I. Damgard, and J.B. Nielsen. Multiparty computation
from threshold homomorphic encryption. In proceedings of EURO-
CRYPT ’01, LNCS series, volume 2045, pages 280–299, 2001.

[CGS97] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and op-
timally eficient multi-authority election scheme. In proceedings of
EUROCRYPT ’97, LNCS series, volume 1233, pages 103–118, 1997.

[DJ01] I. Damg̊ard and M.J. Jurik. A generalisation, a simplification and
some applications of paillier’s probabilistic public-key system. In
4th International Workshop on Practice and Theory in Public Key
Cryptosystems, PKC 2001, LNCS series, volume 1992, 2001.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental
game, or A completeness theorem for protocols with honest majority.
In STOC: ACM Symposium on Theory of Computing (STOC), 1987.

[PS00] D. Pointcheval and J. Stern. Security arguments for digital signatures
and blind signatures. Journal of Cryptology, 13(3):361–396, 2000.

20

[Sho00] V. Shoup. Practical threshold signatures. In Advances in Cryptology
— EUROCRYPT ’00, volume 1807 of Lecture Notes in Computer
Science, pages 207-220., 2000.

21

