
MIT 6.02 DRAFT Lecture Notes

Fall 2010 (Last update: October 4, 2010)

Comments, questions or bug reports?

Please contact 6.02-staff@mit.edu

LECTURE 8

Convolutional Coding

This lecture introduces a powerful and widely used class of codes, called convolutional
codes, which are used in a variety of systems including today’s popular wireless stan-
dards (such as 802.11) and in satellite communications. Convolutional codes are beautiful
because they are intuitive, one can understand them in many different ways, and there is
a way to decode them so as to recover the mathematically most likely message from among
the set of all possible transmitted messages. This lecture discusses the encoding; the next
one discusses how to decode convolutional codes efficiently.

� 8.1 Overview

Convolutional codes are a bit like the block codes discussed in the previous lecture in
that they involve the transmission of parity bits that are computed from message bits.
Unlike block codes in systematic form, however, the sender does not send the message
bits followed by (or interspersed with) the parity bits; in a convolutional code, the sender
sends only the parity bits.

The encoder uses a sliding window to calculate r > 1 parity bits by combining various
subsets of bits in the window. The combining is a simple addition in F2, as in the previous
lectures (i.e., modulo 2 addition, or equivalently, an exclusive-or operation). Unlike a block
code, the windows overlap and slide by 1, as shown in Figure 8-1. The size of the window,
in bits, is called the code’s constraint length. The longer the constraint length, the larger
the number of parity bits that are influenced by any given message bit. Because the parity
bits are the only bits sent over the channel, a larger constraint length generally implies
a greater resilience to bit errors. The trade-off, though, is that it will take considerably
longer to decode codes of long constraint length, so one can’t increase the constraint length
arbitrarily and expect fast decoding.

If a convolutional code that produces r parity bits per window and slides the window
forward by one bit at a time, its rate (when calculated over long messages) is 1/r. The
greater the value of r, the higher the resilience of bit errors, but the trade-off is that a pro-
portionally higher amount of communication bandwidth is devoted to coding overhead.
In practice, we would like to pick r and the constraint length to be as small as possible

1



2 LECTURE 8. CONVOLUTIONAL CODING

Figure 8-1: An example of a convolutional code with two parity bits per message bit (r = 2) and constraint
length (shown in the rectangular window) K = 3.

while providing a low enough resulting probability of a bit error.
In 6.02, we will use K (upper case) to refer to the constraint length, a somewhat un-

fortunate choice because we have used k (lower case) in previous lectures to refer to the
number of message bits that get encoded to produce coded bits. Although “L” might be
a better way to refer to the constraint length, we’ll use K because many papers and docu-
ments in the field use K (in fact, most use k in lower case, which is especially confusing).
Because we will rarely refer to a “block” of size k while talking about convolutional codes,
we hope that this notation won’t cause confusion.

Armed with this notation, we can describe the encoding process succinctly. The encoder
looks at K bits at a time and produces r parity bits according to carefully chosen functions
that operate over various subsets of the K bits.1 One example is shown in Figure 8-1,
which shows a scheme with K = 3 and r = 2 (the rate of this code, 1/r = 1/2). The encoder
spits out r bits, which are sent sequentially, slides the window by 1 to the right, and then
repeats the process. That’s essentially it.

At the transmitter, the only remaining details that we have to worry about now are:
1. What are good parity functions and how can we represent them conveniently?
2. How can we implement the encoder efficiently?
The rest of this lecture will discuss these issues, and also explain why these codes are

called “convolutional”.

� 8.2 Parity Equations

The example in Figure 8-1 shows one example of a set of parity equations, which govern
the way in which parity bits are produced from the sequence of message bits, X . In this
example, the equations are as follows (all additions are in F2)):

p0[n] = x[n] + x[n− 1] + x[n− 2]

p1[n] = x[n] + x[n− 1] (8.1)

1By convention, we will assume that each message has K − 1 “0” bits padded in front, so that the initial
conditions work out properly.



SECTION 8.2. PARITY EQUATIONS 3

An example of parity equations for a rate 1/3 code is

p0[n] = x[n] + x[n− 1] + x[n− 2]

p1[n] = x[n] + x[n− 1]

p2[n] = x[n] + x[n− 2] (8.2)

In general, one can view each parity equation as being produced by composing the mes-
sage bits, X , and a generator polynomial, g. In the first example above, the generator poly-
nomial coefficients are (1,1,1) and (1,1,0), while in the second, they are (1,1,1), (1,1,0),
and (1,0,1).

We denote by gi the K-element generator polynomial for parity bit pi. We can then
write pi as follows:

pi[n] = (
k−1�

j=0

gi[j]x[n− j]) mod 2. (8.3)

The form of the above equation is a convolution of g and x—hence the term “convolu-
tional code”. The number of generator polynomials is equal to the number of generated
parity bits, r, in each sliding window.

� 8.2.1 An Example

Let’s consider the two generator polynomials of Equations 8.1 (Figure 8-1). Here, the gen-
erator polynomials are

g0 = 1,1,1

g1 = 1,1,0 (8.4)

If the message sequence, X = [1,0,1,1, . . .] (as usual, x[n] = 0 ∀n < 0), then the parity
bits from Equations 8.1 work out to be

p0[0] = (1 + 0+ 0) = 1

p1[0] = (1 + 0) = 1

p0[1] = (0 + 1+ 0) = 1

p1[1] = (0 + 1) = 1

p0[2] = (1 + 0+ 1) = 0

p1[2] = (1 + 0) = 1

p0[3] = (1 + 1+ 0) = 0

p1[3] = (1 + 1) = 0. (8.5)

Therefore, the parity bits sent over the channel are [1,1,1,1,0,0,0,0, . . .].
There are several generator polynomials, but understanding how to construct good

ones is outside the scope of 6.02. Some examples (found by J. Busgang) are shown in
Table 8-1.



4 LECTURE 8. CONVOLUTIONAL CODING

Constraint length G1 G2

3 110 111
4 1101 1110
5 11010 11101
6 110101 111011
7 110101 110101
8 110111 1110011
9 110111 111001101
10 110111001 1110011001

Table 8-1: Examples of generator polynomials for rate 1/2 convolutional codes with different constraint
lengths.

Figure 8-2: Block diagram view of convolutional coding with shift registers.

� 8.3 Two Views of the Convolutional Encoder

We now describe two views of the convolutional encoder, which we will find useful in
better understanding convolutional codes and in implementing the encoding and decod-
ing procedures. The first view is in terms of a block diagram, where one can construct
the mechanism using shift registers that are connected together. The second is in terms of
a state machine, which corresponds to a view of the encoder as a set of states with well-
defined transitions between them. The state machine view will turn out to be extremely
useful in figuring out how to decode a set of parity bits to reconstruct the original message
bits.

� 8.3.1 Block Diagram View

Figure 8-2 shows the same encoder as Figure 8-1 and Equations (8.1) in the form of a block
diagram. The x[n− i] values (here there are two) are referred to as the state of the encoder.
The way to think of this block diagram is as a “black box” that takes message bits in and
spits out parity bits.

Input message bits, x[n], arrive on the wire from the left. The box calculates the parity
bits using the incoming bits and the state of the encoder (the k − 1 previous bits; 2 in this
example). After the r parity bits are produced, the state of the encoder shifts by 1, with x[n]



SECTION 8.3. TWO VIEWS OF THE CONVOLUTIONAL ENCODER 5

Figure 8-3: State machine view of convolutional coding.

taking the place of x[n−1], x[n−1] taking the place of x[n−2], and so on, with x[n−K+1]
being discarded. This block diagram is directly amenable to a hardware implementation
using shift registers.

� 8.3.2 State Machine View

Another useful view of convolutional codes is as a state machine, which is shown in Fig-
ure 8-3 for the same example that we have used throughout this lecture (Figure 8-1).

The state machine for a convolutional code is identical for all codes with a given con-
straint length, K, and the number of states is always 2K−1. Only the pi labels change de-
pending on the number of generator polynomials and the values of their coefficients. Each
state is labeled with x[n− 1]x[n− 2] . . . x[n−K + 1]. Each arc is labeled with x[n]/p0p1 . . ..
In this example, if the message is 101100, the transmitted bits are 11 11 01 00 01 10.

This state machine view is an elegant way to explain what the transmitter does, and also
what the receiver ought to do to decode the message, as we now explain. The transmitter
begins in the initial state (labeled “STARTING STATE” in Figure 8-3) and processes the
message one bit at a time. For each message bit, it makes the state transition from the
current state to the new one depending on the value of the input bit, and sends the parity
bits that are on the corresponding arc.

The receiver, of course, does not have direct knowledge of the transmitter’s state transi-
tions. It only sees the received sequence of parity bits, with possible corruptions. Its task is
to determine the best possible sequence of transmitter states that could have produced
the parity bit sequence. This task is called decoding, which we will introduce next, and
then study in more detail in the next lecture.



6 LECTURE 8. CONVOLUTIONAL CODING

� 8.4 The Decoding Problem

As mentioned above, the receiver should determine the “best possible” sequence of trans-
mitter states. There are many ways of defining “best”, but one that is especially appealing
is the most likely sequence of states (i.e., message bits) that must have been traversed (sent)
by the transmitter. A decoder that is able to infer the most likely sequence is also called a
maximum likelihood decoder.

Consider the binary symmetric channel, where bits are received erroneously with prob-
ability p < 1/2. What should a maximum likelihood decoder do when it receives r? We
show now that if it decodes r as c, the nearest valid codeword with smallest Hamming
distance from r, then the decoding is a maximum likelihood one.

A maximum likelihood decoder maximizes the quantity P (r|c); i.e., it finds c so that the
probability that r was received given that c was sent is maximized. Consider any codeword
c̃. If r and c̃ differ in d bits (i.e., their Hamming distance is d), then P (r|c) = pd(1− p)N−d,
where N is the length of the received word (and also the length of each valid codeword).
It’s more convenient to take the logarithm of this conditional probaility, also termed the
log-likelihood:2

logP (r|c̃) = d log p+ (N − d) log(1− p) = d log
p

1− p
+N log(1− p). (8.6)

If p < 1/2, which is the practical realm of operation, then p
1−p < 1 and the log term is

negative (otherwise, it’s non-negative). As a result, minimizing the log likelihood boils
down to minimizing d, because the second term on the RHS of Eq. (8.6) is a constant.

A simple numerical example may be useful. Suppose that bit errors are independent
and identically distribute with a BER of 0.001, and that the receiver digitizes a sequence
of analog samples into the bits 1101001. Is the sender more likely to have sent 1100111
or 1100001? The first has a Hamming distance of 3, and the probability of receiving that
sequence is (0.999)4(0.001)3 = 9.9× 10−10. The second choice has a Hamming distance of
1 and a probability of (0.999)6(0.001)1 = 9.9× 10−4, which is six orders of magnitude higher
and is overwhelmingly more likely.

Thus, the most likely sequence of parity bits that was transmitted must be the one with
the smallest Hamming distance from the sequence of parity bits received. Given a choice
of possible transmitted messages, the decoder should pick the one with the smallest such
Hamming distance.

Determining the nearest valid codeword to a received word is easier said than done
for convolutional codes. For example, see Figure 8-4, which shows a convolutional code
with k = 3 and rate 1/2. If the receiver gets 111011000110, then some errors have occurred,
because no valid transmitted sequence matches the received one. The last column in the
example shows d, the Hamming distance to all the possible transmitted sequences, with
the smallest one circled. To determine the most-likely 4-bit message that led to the parity
sequence received, the receiver could look for the message whose transmitted parity bits
have smallest Hamming distance from the received bits. (If there are ties for the smallest,
we can break them arbitrarily, because all these possibilities have the same resulting post-

2The base of the logarithm doesn’t matter to us at this stage, but traditionally the log likelihood is defined
as the natural logarithm (base e).



SECTION 8.5. THE TRELLIS AND DECODING THE MESSAGE 7

Msg Xmit* Rcvd d 

0000 000000000000 

111011000110 

7 

0001 000000111110 8 

0010 000011111000 8 

0011 000011010110 4 

0100 001111100000 6 

0101 001111011110 5 

0110 001101001000 7 

0111 001100100110 6 

1000 111110000000 4 

1001 111110111110 5 

1010 111101111000 7 

1011 111101000110 2 

1100 110001100000 5 

1101 110001011110 4 

1110 110010011000 6 

1111 110010100110 3 

Most likely: 1011 

Figure 8-4: When the probability of bit error is less than 1/2, maximum likelihood decoding boils down
to finding the message whose parity bit sequence, when transmitted, has the smallest Hamming distance
to the received sequence. Ties may be broken arbitrarily. Unfortunately, for an N -bit transmit sequence,
there are 2N possibilities, which makes it hugely intractable to simply go through in sequence because
of the sheer number. For instance, when N = 256 bits (a really small packet), the number of possibilities
rivals the number of atoms in the universe!

coded BER.)
The straightforward approach of simply going through the list of possible transmit se-

quences and comparing Hamming distances is horribly intractable. The reason is that a
transmit sequence of N bits has 2N possible strings, a number that is simply too large
for even small values of N , like 256 bits. We need a better plan for the receiver to navigate
this unbelievable large space of possibilities and quickly determine the valid message with
smallest Hamming distance. We will study a powerful and widely applicable method for
solving this problem, called Viterbi decoding, in the next lecture. This decoding method
uses a special structure called the trellis, which we describe next.

� 8.5 The Trellis and Decoding the Message

The trellis is a structure derived from the state machine that will allow us to develop an
efficient way to decode convolutional codes. The state machine view shows what happens



8 LECTURE 8. CONVOLUTIONAL CODING

Figure 8-5: The trellis is a convenient way of viewing the decoding task and understanding the time evo-
lution of the state machine.

at each instant when the sender has a message bit to process, but doesn’t show how the
system evolves in time. The trellis is a structure that makes the time evolution explicit.
An example is shown in Figure 8-5. Each column of the trellis has the set of states; each
state in a column is connected to two states in the next column—the same two states in
the state diagram. The top link from each state in a column of the trellis shows what gets
transmitted on a “0”, while the bottom shows what gets transmitted on a “1”. The picture
shows the links between states that are traversed in the trellis given the message 101100.

We can now think about what the decoder needs to do in terms of this trellis. It gets a
sequence of parity bits, and needs to determine the best path through the trellis—that is,
the sequence of states in the trellis that can explain the observed, and possibly corrupted,
sequence of received parity bits.

The Viterbi decoder finds a maximum likelihood path through the Trellis. We will study
it in the next lecture.


