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A method is developed for representing any communication
system geometrically. Messages and the corresponding signals are
points in two “function spaces,” and the modulation process is a
mapping of one space into the other. Using this representation, a
number of results in communication theory are deduced concern-
ing expansion and compression of bandwidth and the threshold
effect. Formulas are found for the maximum rate of transmission
of binary digits over a system when the signal is perturbed by
various types of noise. Some of the properties of “ideal” systems
which transmit at this maximum rate are discussed. The equivalent
number of binary digits per second for certain information sources
is calculated.

I. INTRODUCTION

A general communications system is shown schemati-
cally in Fig. 1. It consists essentially of five elements.

1) An Information Source:The source selects one mes-
sage from a set of possible messages to be transmitted to
the receiving terminal. The message may be of various
types; for example, a sequence of letters or numbers, as
in telegraphy or teletype, or a continuous function of time

, as in radio or telephony.
2) The Transmitter:This operates on the message in

some way and produces a signal suitable for transmission
to the receiving point over the channel. In telephony, this
operation consists of merely changing sound pressure into
a proportional electrical current. In telegraphy, we have
a encoding operation which produces a sequence of dots,
dashes, and spaces corresponding to the letters of the
message. To take a more complex example, in the case of
multiplex PCM telephony the different speech functions
must be sampled, compressed, quantized and encoded, and
finally interleaved properly to construct the signal.

3) The Channel:This is merely the medium used to
transmit the signal from the transmitting to the receiving
point. It may be a pair of wires, a coaxial cable, a band
of radio frequencies, etc. During transmission, or at the
receiving terminal, the signal may be perturbed by noise
or distortion. Noise and distortion may be differentiated on
the basis that distortion is a fixed operation applied to the
signal, while noise involves statistical and unpredictable
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Fig. 1. General communications system.

perturbations. Distortion can, in principle, be corrected by
applying the inverse operation, while a perturbation due to
noise cannot always be removed, since the signal does not
always undergo the same change during transmission.

4) The Receiver:This operates on the received signal
and attempts to reproduce, from it, the original message.
Ordinarily it will perform approximately the mathematical
inverse of the operations of the transmitter, although they
may differ somewhat with best design in order to combat
noise.

5) The Destination:This is the person or thing for whom
the message is intended.

Following Nyquist1 and Hartley,2 it is convenient to use
a logarithmic measure of information. If a device has
possible positions it can, by definition, store logunits of
information. The choice of the baseamounts to a choice
of unit, since log log log . We will use the base
2 and call the resulting units binary digits or bits. A group
of relays or flip-flop circuits has possible sets of
positions, and can therefore store log bits.

If it is possible to distinguish reliably different signal
functions of duration on a channel, we can say that the
channel can transmit log bits in time . The rate of
transmission is then log . More precisely, thechannel
capacity may be defined as

(1)

1H. Nyquist, “Certain factors affecting telegraph speed,”Bell Syst. Tech.
J., vol. 3, p. 324, Apr. 1924.

2R. V. L. Hartley, “The transmission of information,”Bell Syst. Tech.
J., vol. 3, p. 535–564, July 1928.
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A precise meaning will be given later to the requirement
of reliable resolution of the signals.

II. THE SAMPLING THEOREM

Let us suppose that the channel has a certain bandwidth
in cps starting at zero frequency, and that we are allowed

to use this channel for a certain period of time. Without
any further restrictions this would mean that we can use
as signal functions any functions of time whose spectra lie
entirely within the band , and whose time functions lie
within the interval . Although it is not possible to fulfill
both of these conditions exactly, it is possible to keep the
spectrum within the band , and to have the time function
very small outside the interval. Can we describe in a more
useful way the functions which satisfy these conditions?
One answer is the following.

Theorem 1: If a function contains no frequencies
higher than cps, it is completely determined by giving
its ordinates at a series of points spaced 1/2seconds
apart.

This is a fact which is common knowledge in the
communication art. The intuitive justification is that, if
contains no frequencies higher than, it cannot change to
a substantially new value in a time less than one-half cycle
of the highest frequency, that is, 1/2. A mathematical
proof showing that this is not only approximately, but
exactly, true can be given as follows. Let be the
spectrum of . Then

(2)

(3)

since is assumed zero outside the band. If we let

(4)

where is any positive or negative integer, we obtain

(5)

On the left are the values of at the sampling points. The
integral on the right will be recognized as essentially the

th coefficient in a Fourier-series expansion of the function
, taking the interval to as a fundamental

period. This means that the values of the samples
determine the Fourier coefficients in the series expansion
of . Thus they determine , since is zero for
frequencies greater than , and for lower frequencies
is determined if its Fourier coefficients are determined. But

determines the original function completely,
since a function is determined if its spectrum is known.
Therefore the original samples determine the function
completely. There is one and only one function whose
spectrum is limited to a band , and which passes through
given values at sampling points separated 1.2seconds

apart. The function can be simply reconstructed from the
samples by using a pulse of the type

sin
(6)

This function is unity at and zero at ,
i.e., at all other sample points. Furthermore, its spectrum is
constant in the band and zero outside. At each sample
point a pulse of this type is placed whose amplitude is
adjusted to equal that of the sample. The sum of these pulses
is the required function, since it satisfies the conditions on
the spectrum and passes through the sampled values.

Mathematically, this process can be described as follows.
Let be the th sample. Then the function is
represented by

sin
(7)

A similar result is true if the band does not start
at zero frequency but at some higher value, and can be
proved by a linear translation (corresponding physically to
single-sideband modulation) of the zero-frequency case. In
this case the elementary pulse is obtained from sinby
single-side-band modulation.

If the function is limited to the time interval and the
samples are spaced 1/2seconds apart, there will be a total
of samples in the interval. All samples outside will
be substantially zero. To be more precise, we can define a
function to be limited to the time interval if, and only if,
all the samples outside this interval are exactly zero. Then
we can say that any function limited to the bandwidth
and the time interval can be specified by giving
numbers.

Theorem 1 has been given previously in other forms
by mathematicians3 but in spite of its evident importance
seems not to have appeared explicitly in the literature
of communication theory. Nyquist,4, 5 however, and more
recently Gabor,6 have pointed out that approximately
numbers are sufficient, basing their arguments on a Fourier
series expansion of the function over the time interval

. This given and cosine terms up to
frequency . The slight discrepancy is due to the fact
that the functions obtained in this way will not be strictly
limited to the band but, because of the sudden starting
and stopping of the sine and cosine components, contain
some frequency content outside the band. Nyquist pointed
out the fundamental importance of the time interval
seconds in connection with telegraphy, and we will call this
the Nyquist interval corresponding to the band.

3J. M. Whittaker, Interpolatory Function Theory, Cambridge Tracts
in Mathematics and Mathematical Physics, no. 33. Cambridge, U.K.:
Cambridge Univ. Press, ch. IV, 1935.

4H. Nyquist, “Certain topics in telegraph transmission theory,”AIEE
Trans., p. 617, Apr. 1928.

5W. R. Bennett, “Time division multiplex systems,”Bell Syst. Tech.
J., vol. 20, p. 199, Apr. 1941, where a result similar to Theorem 1 is
established, but on a steady-state basis.

6D. Gabor, “Theory of communication,”J. Inst. Elect. Eng.(London),
vol. 93, pt. 3, no. 26, p. 429, 1946.
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The numbers used to specify the function need not
be the equally spaced samples used above. For example,
the samples can be unevenly spaced, although, if there is
considerable bunching, the samples must be known very
accurately to give a good reconstruction of the function. The
reconstruction process is also more involved with unequal
spacing. One can further show that the value of the function
and its derivative at every other sample point are sufficient.
The value and first and second derivatives at every third
sample point give a still different set of parameters which
uniquely determine the function. Generally speaking, any
set of independent numbers associated with the
function can be used to describe it.

III. GEOMETRICAL REPRESENTATION OF THESIGNALS

A set of three numbers , , , regardless of their
source, can always be thought of as coordinates of a point in
three-dimensional space. Similarly, the evenly spaced
samples of a signal can be thought of as coordinates of
a point in a space of dimensions. Each particular
selection of these numbers corresponds to a particular point
in this space. Thus there is exactly one point corresponding
to each signal in the band and with duration .

The number of dimensions will be, in general, very
high. A 5-Mc television signal lasting for an hour would be
represented by a point in a space with

dimensions. Needless to say, such a space cannot
be visualized. It is possible, however, to study analytically
the properties of -dimensional space. To a considerable
extent, these properties are a simple generalization of the
properties of two- and three-dimensional space, and can
often be arrived at by inductive reasoning from these cases.
The advantage of this geometrical representation of the
signals is that we can use the vocabulary and the results of
geometry in the communication problem. Essentially, we
have replaced a complex entity (say, a television signal) in
a simple environment [the signal requires only a plane for
its representation as ] by a simple entity (a point) in a
complex environment ( dimensional space).

If we imagine the coordinate axes to be at right
angles to each other, then distances in the space have a
simple interpretation. The distance from the origin to a point
is analogous to the two- and three-dimensional cases

(8)

where is the th sample. Now, since

sin
(9)

we have

(10)

using the fact that

sin sin

(11)

Hence, the square of the distance to a point is times the
energy (more precisely, the energy into a unit resistance)
of the corresponding signal

(12)

where is the average power over the time. Similarly,
the distance between two points is times the rms
discrepancy between the two corresponding signals.

If we consider only signals whose average power is less
than , these will correspond to points within a sphere of
radius

(13)

If noise is added to the signal in transmission, it means
that the point corresponding to the signal has been moved a
certain distance in the space proportional to the rms value of
the noise. Thus noise produces a small region of uncertainty
about each point in the space. A fixed distortion in the
channel corresponds to a warping of the space, so that each
point is moved, but in a definite fixed way.

In ordinary three-dimensional space it is possible to
set up many different coordinate systems. This is also
possible in the signal space of dimensions that we
are considering. A different coordinate system corresponds
to a different way of describing the same signal function.
The various ways of specifying a function given above are
special cases of this. One other way of particular importance
in communication is in terms of frequency components.
The function can be expanded as a sum of sines and
cosines of frequencies apart, and the coefficients used
as a different set of coordinates. It can be shown that these
coordinates are all perpendicular to each other and are
obtained by what is essentially a rotation of the original
coordinate system.

Passing a signal through an ideal filter corresponds to
projecting the corresponding point onto a certain region in
the space. In fact, in the frequency-coordinate system those
components lying in the pass band of the filter are retained
and those outside are eliminated, so that the projection is
on one of the coordinate lines, planes, or hyperplanes. Any
filter performs a linear operation on the vectors of the space,
producing a new vector linearly related to the old one.

IV. GEOMETRICAL REPRESENTATION OFMESSAGES

We have associated a space of dimensions with the
set of possible signals. In a similar way one can associate
a space with the set of possible messages. Suppose we are
considering a speech system and that the messages consist
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Fig. 2. Reduction of dimensionality through equivalence classes.

of all possible sounds which contain no frequencies over a
certain limit and last for a time .

Just as for the case of the signals, these messages can
be represented in a one-to-one way in a space of
dimensions. There are several points to be noted, however.
In the first place, various different points may represent the
same message, insofar as the final destination is concerned.
For example, in the case of speech, the ear is insensitive
to a certain amount of phase distortion. Messages differing
only in the phases of their components (to a limited extent)
sound the same. This may have the effect of reducing the
number of essential dimensions in the message space. All
the points which are equivalent for the destination can be
grouped together and treated as one point. It may then
require fewer numbers to specify one of these “equivalence
classes” than to specify an arbitrary point. For example, in
Fig. 2 we have a two-dimensional space, the set of points in
a square. If all points on a circle are regarded as equivalent,
it reduces to a one-dimensional space—a point can now be
specified by one number, the radius of the circle. In the
case of sounds, if the ear were completely insensitive to
phase, then the number of dimensions would be reduced
by one-half due to this cause alone. The sine and cosine
components and for a given frequency would not
need to be specified independently, but only ; that
is, the total amplitude for this frequency. The reduction in
frequency discrimination of the ear as frequency increases
indicates that a further reduction in dimensionality occurs.
The vocoder makes use to a considerable extent of these
equivalences among speech sounds, in the first place by
eliminating, to a large degree, phase information, and in
the second place by lumping groups of frequencies together,
particularly at the higher frequencies.

In other types of communication there may not be any
equivalence classes of this type. The final destination is
sensitive to any change in the message within the full
message space of dimensions. This appears to be
the case in television transmission.

A second point to be noted is that the information source
may put certain restrictions on the actual messages. The
space of dimensions contains a point forevery
function of time limited to the band and of duration

. The class of messages we wish to transmit may be
only a small subset of these functions. For example, speech
sounds must be produced by the human vocal system. If
we are willing to forego the transmission of any other
sounds, the effective dimensionality may be considerably

decreased. A similar effect can occur through probability
considerations. Certain messages may be possible, but so
improbable relative to the others that we can, in a certain
sense, neglect them. In a television image, for example,
successive frames are likely to be very nearly identical.
There is a fair probability of a particular picture element
having the same light intensity in successive frames. If
this is analyzed mathematically, it results in an effective
reduction of dimensionality of the message space when
is large.

We will not go further into these two effects at present,
but let us suppose that, when they are taken into account, the
resulting message space has a dimensionality, which will,
of course, be less than or equal to . In many cases,
even though the effects are present, their utilization involves
too much complication in the way of equipment. The
system is then designed on the basis that all functions are
different and that there are no limitations on the information
source. In this case, the message space is considered to have
the full dimensions.

V. GEOMETRICAL REPRESENTATION OF THE

TRANSMITTER AND RECEIVER

We now consider the function of the transmitter from
this geometrical standpoint. The input to the transmitter is
a message; that is, one point in the message space. Its output
is a signal—one point in the signal space. Whatever form
of encoding or modulation is performed, the transmitter
must establish some correspondence between the points in
the two spaces. Every point in the message space must
correspond to a point in the signal space, and no two
messages can correspond to the same signal. If they did,
there would be no way to determine at the receiver which
of the two messages was intended. The geometrical name
for such a correspondence is a mapping. The transmitter
maps the message space into the signal space.

In a similar way, the receiver maps the signal space back
into the message space. Here, however, it is possible to
have more than one point mapped into the same point.
This means that several different signals are demodulated
or decoded into the same message. In AM, for example,
the phase of the carrier is lost in demodulation. Different
signals which differ only in the phase of the carrier are
demodulated into the same message. In FM the shape of
the signal wave above the limiting value of the limiter
does not affect the recovered message. In PCM considerable
distortion of the received pulses is possible, with no effect
on the output of the receiver.

We have so far established a correspondence between a
communication system and certain geometrical ideas. The
correspondence is summarized in Table 1.

VI. M APPING CONSIDERATIONS

It is possible to draw certain conclusions of a general
nature regarding modulation methods from the geometrical
picture alone. Mathematically, the simplest types of map-
pings are those in which the two spaces have the same
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Table 1

Fig. 3. Mapping similar to frequency modulation.

number of dimensions. Single-sideband amplitude modula-
tion is an example of this type and an especially simple one,
since the coordinates in the signal space are proportional
to the corresponding coordinates in the message space. In
double-sideband transmission the signal space has twice the
number of coordinates, but they occur in pairs with equal
values. If there were only one dimension in the message
space and two in the signal space, it would correspond to
mapping a line onto a square so that the pointon the line
is represented by in the square. Thus no significant
use is made of the extra dimensions. All the messages go
into a subspace having only dimensions.

In frequency modulation the mapping is more involved.
The signal space has a much larger dimensionality than
the message space. The type of mapping can be suggested
by Fig. 3, where a line is mapped into a three-dimensional
space. The line starts at unit distance from the origin on the
first coordinate axis, stays at this distance from the origin
on a circle to the next coordinate axis, and then goes to
the third. It can be seen that the line is lengthened in this
mapping in proportion to the total number of coordinates.
It is not, however, nearly as long as it could be if it wound
back and forth through the space, filling up the internal
volume of the sphere it traverses.

This expansion of the line is related to the improved
signal-to-noise ratio obtainable with increased bandwidth.
Since the noise produces a small region of uncertainty about
each point, the effect of this on the recovered message will
be less if the map is in a large scale. To obtain as large
a scale as possible requires that the line wander back and

Fig. 4. Efficient mapping of a line into a square.

forth through the higher dimensional region as indicated
in Fig. 4, where we have mapped a line into a square. It
will be noticed that when this is done the effect of noise is
small relative to the length of the line, provided the noise
is less than a certain critical value. At this value it becomes
uncertain at the receiver as to which portion of the line
contains the message. This holds generally, and it shows
that any system which attempts to use the capacities of a
wider band to the full extent possible will suffer from a
threshold effect when there is noise. If the noise is small,
very little distortion will occur, but at some critical noise
amplitude the message will become very badly distorted.
This effect is well known in PCM.

Suppose, on the other hand, we wish to reduce dimen-
sionality, i.e., to compress bandwidth or time or both. That
is, we wish to send messages of band and duration

over a channel with . It has already been
indicated that the effective dimensionalityof the message
space may be less than due to the properties of the
source and of the destination. Hence we certainly need no
more than dimension in the signal space for a good
mapping. To make this saving it is necessary, of course, to
isolate the effective coordinates in the message space, and
to send these only. The reduced bandwidth transmission of
speech by the vocoder is a case of this kind.

The question arises, however, as to whether further
reduction is possible. In our geometrical analogy, is it
possible to map a space of high dimensionality onto one of
lower dimensionality? The answer is that it is possible, with
certain reservations. For example, the points of a square
can be described by their two coordinates which could be
written in decimal notation

(14)

From these two numbers we can construct one number by
taking digits alternately from and

(15)

A knowledge of and determines , and determines
both and . Thus there is a one-to-one correspondence
between the points of a square and the points of a line.
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This type of mapping, due to the mathematician Cantor,
can easily be extended as far as we wish in the direction of
reducing dimensionality. A space of dimensions can be
mapped in a one-to-one way into a space of one dimension.
Physically, this means that the frequency-time product can
be reduced as far as we wish when there is no noise, with
exact recovery of the original messages.

In a less exact sense, a mapping of the type shown in
Fig. 4 maps a square into a line, provided we are not too
particular about recovering exactly the starting point, but
are satisfied with a nearby one. The sensitivity we noticed
before when increasing dimensionality now takes a different
form. In such a mapping, to reduce , there will be a
certain threshold effect when we perturb the message. As
we change the message a small amount, the corresponding
signal will change a small amount, until some critical
value is reached. At this point the signal will undergo a
considerable change. In topology it is shown7 that it is
not possible to map a region of higher dimension into a
region of lower dimensioncontinuously. It is the necessary
discontinuity which produces the threshold effects we have
been describing for communication systems.

This discussion is relevant to the well-known “Hartley
law,” which states that “an upper limit to the amount
of information which may be transmitted is set by the
sum for the various available lines of the product of the
line-frequency range of each by the time during which
it is available for use.” There is a sense in which this
statement is true, and another sense in which it is false.
It is not possible to map the message space into the
signal space in a one-to-one, continuous manner (this is
known mathematically as atopological mapping) unless
the two spaces have the same dimensionality; i.e., unless

. Hence, if we limit the transmitter and receiver
to continuous one-to-one operations, there is a lower bound
to the product in the channel. This lower bound is
determined, not by the product of message bandwidth
and time, but by the number ofessentialdimension , as
indicated in Section IV. There is, however, no good reason
for limiting the transmitter and receiver to topological
mappings. In fact, PCM and similar modulation systems
are highly discontinuous and come very close to the type
of mapping given by (14) and (15). It is desirable, then, to
find limits for what can be done with no restrictions on the
type of transmitter and receiver operations. These limits,
which will be derived in the following sections, depend on
the amount and nature of the noise in the channel, and on
the transmitter power, as well as on the bandwidth-time
product.

It is evident that any system, either to compress , or
to expand it and make full use of the additional volume,
must be highly nonlinear in character and fairly complex
because of the peculiar nature of the mappings involved.

7W. Hurewitz and H. Wallman,Dimension Theory. Princeton, NJ:
Princeton Univ. Press, 1941.

VII. T HE CAPACITY OF A CHANNEL IN THE

PRESENCE OFWHITE THERMAL NOISE

It is not difficult to set up certain quantitative relations
that must hold when we change the product . Let us
assume, for the present, that the noise in the system is a
white thermal-noise band limited to the band, and that
it is added to the transmitted signal to produce the received
signal. A white thermal noise has the property that each
sample is perturbed independently of all the others, and the
distribution of each amplitude is Gaussian with standard
deviation where is the average noise power.
How many different signals can be distinguished at the
receiving point in spite of the perturbations due to noise?
A crude estimate can be obtained as follows. If the signal
has a power , then the perturbed signal will have a power

. The number of amplitudes that can be reasonably
well distinguished is

(16)

where is a small constant in the neighborhood of
unity depending on how the phrase “reasonably well” is
interpreted. If we require very good separation, will
be small, while toleration of occasional errors allows
to be larger. Since in time there are independent
amplitudes, the total number of reasonably distinct signals
is

(17)

The number of bits that can be sent in this time is log,
and the rate of transmission is

log (bits per second) (18)

The difficulty with this argument, apart from its general
approximate character, lies in the tacit assumption that
for two signals to be distinguishable they must differ at
some sampling point by more than the expected noise.
The argument presupposes that PCM, or something very
similar to PCM, is the best method of encoding binary
digits into signals. Actually, two signals can be reliably
distinguished if they differ by only a small amount, pro-
vided this difference is sustained over a long period of
time. Each sample of the received signal then gives a small
amount of statistical information concerning the transmitted
signal; in combination, these statistical indications result in
near certainty. This possibility allows an improvement of
about 8 dB in power over (18) with a reasonable definition
of reliable resolution of signals, as will appear later. We
will now make use of the geometrical representation to
determine the exact capacity of a noisy channel.

Theorem 2: Let be the average transmitter power, and
suppose the noise is white thermal noise of powerin the
band . By sufficiently complicated encoding systems it
is possible to transmit binary digits at a rate

log (19)
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with as small a frequency of errors as desired. It is not
possible by any encoding method to send at a higher rate
and have an arbitrarily low frequency of errors.

This shows that the rate log measures
in a sharply defined way the capacity of the channel for
transmitting information. It is a rather surprising result,
since one would expect that reducing the frequency of
errors would require reducing the rate of transmission, and
that the rate must approach zero as the error frequency
does. Actually, we can send at the rate but reduce
errors by using more involved encoding and longer delays
at the transmitter and receiver. The transmitter will take
long sequences of binary digits and represent this entire
sequence by a particular signal function of long duration.
The delay is required because the transmitter must wait for
the full sequence before the signal is determined. Similarly,
the receiver must wait for the full signal function before
decoding into binary digits.

We now prove Theorem 2. In the geometrical represen-
tation each signal point is surrounded by a small region
of uncertainty due to noise. With white thermal noise, the
perturbations of the different samples (or coordinates) are
all Gaussian and independent. Thus the probability of a
perturbation having coordinates (these are
the differences between the original and received signal
coordinates) is the product of the individual probabilities
for the different coordinates

exp

exp

Since this depends only on

the probability of a given perturbation depends only on the
distancefrom the original signal and not on the direction.
In other words, the region of uncertainty is spherical in
nature. Although the limits of this region are not sharply
defined for a small number of dimensions , the
limits become more and more definite as the dimensionality
increases. This is because the square of the distance a
signal is perturbed is equal to times the average
noise power during the time . As increases, this
average noise power must approach. Thus, for large

, the perturbation will almost certainly be to some point
near the surface of a sphere of radius centered
at the original signal point. More precisely, by taking

sufficiently large we can insure (with probability as
near to one as we wish) that the perturbation will lie
within a sphere of radius where is
arbitrarily small. The noise regions can therefore be thought
of roughly as sharply defined billiard balls, when is
very large. The received signals have an average power

, and in the same sense must almost all lie on

the surface of a sphere of radius . How
many different transmitted signals can be found which will
be distinguishable? Certainly not more than the volume
of the sphere of radius divided by the
volume of a sphere of radius , since overlap of
the noise spheres results in confusion as to the message
at the receiving point. The volume of an-dimensional
sphere8 of radius is

(20)

Hence, an upper limit for the number of distinguishable
signals is

(21)

Consequently, the channel capacity is bounded by

log (22)

This proves the last statement in the theorem.
To prove the first part of the theorem, we must show

that there exists a system of encoding which transmits
log binary digits per second with a fre-

quency of errors less than when is arbitrarily small.
The system to be considered operates as follows. A long
sequence of, say, binary digits is taken in at the trans-
mitter. There are such sequences, and each corresponds
to a particular signal function of duration. Thus there
are different signal functions. When the sequence
of is completed, the transmitter starts sending the cor-
responding signal. At the receiver a perturbed signal is
received. The receiver compares this signal with each of the

possible transmitted signals and selects the one which
is nearest the perturbed signal (in the sense of rms error)
as the one actually sent. The receiver then constructs, as its
output, the corresponding sequence of binary digits. There
will be, therefore, an overall delay of seconds.

To insure a frequency of errors less than, the signal
functions must be reasonably well separated from each
other. In fact, we must choose them in such a way that,
when a perturbed signal is received, the nearest signal
point (in the geometrical representation) is, with probability
greater than , the actual original signal.

It turns out, rather surprisingly, that it is possible to
choose our signal functions at random from the points
inside the sphere of radius , and achieve the most
that is possible. Physically, this corresponds very nearly to
using different samples of band-limited white noise with
power as signal functions.

A particular selection of points in the sphere corre-
sponds to a particular encoding system. The general scheme
of the proof is to consider all such selections, and to show
that the frequency of errors averaged over all the particular
selections is less than. This will show that there are

8D. M. Y. Sommerville, An Introduction to the Geometry ofN
Dimensions. New York: Dutton, 1929, p. 135.
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Fig. 5. The geometry involved in Theorem 2.

particular selections in the set with frequency of errors less
than . Of course, there will be other particular selections
with a high frequency of errors.

The geometry is shown in Fig. 5. This is a plane cross
section through the high-dimensional sphere defined by a
typical transmitted signal , received signal , and the
origin 0. The transmitted signal will lie very close to
the surface of the sphere of radius , since in
a high-dimensional sphere nearly all the volume is very
close to the surface. The received signal similarly will lie
on the surface of the sphere of radius .
The high-dimensional lens-shaped regionis the region
of possible signals that might have caused, since the
distance between the transmitted and received signal is
almost certainly very close to . is of smaller
volume than a sphere of radius. We can determine
by equating the area of the triangle , calculated two
different ways

The probability of any particular signal point (other
than the actual cause of ) lying in is, therefore,
less than the ratio of the volumes of spheres of radii

and , since in our ensemble
of coding systems we chose the signal points at random
from the points in the sphere of radius . This
ratio is

(23)

We have signal points. Hence the probabilitythat all
except the actual cause of areoutside is greater than

(24)

When these points are outside, the signal is interpreted
correctly. Therefore, if we make greater than , the

frequency of errors will be less than. This will be true if

(25)

Now is always greater than when is
positive. Consequently, (25) will be true if

(26)

or if

(27)

or

log
log

log
(28)

For any fixed , we can satisfy this by taking suffi-
ciently large, and also have log or log as
close as desired to log . This shows that, with
a random selection of points for signals, we can obtain an
arbitrarily small frequency of errors and transmit at a rate
arbitrarily close to the rate . We can also sendat the
rate with arbitrarily small , since the extra binary digits
need not be sent at all, but can be filled in at random at the
receiver. This only adds another arbitrarily small quantity
to . This completes the proof.

VIII. D ISCUSSION

We will call a system that transmits without errors at the
rate an ideal system. Such a system cannot be achieved
with any finite encoding process but can be approximated
as closely as desired. As we approximate more closely to
the ideal, the following effects occur.

1) The rate of transmission of binary digits approaches
log .

2) The frequency of errors approaches zero.

3) The transmitted signal approaches a white noise in
statistical properties. This is true, roughly speaking,
because the various signal functions used must be dis-
tributed at random in the sphere of radius .

4) The threshold effect becomes very sharp. If the noise
is increased over the value for which the system
was designed, the frequency of errors increases very
rapidly.

5) The required delays at transmitter and receiver in-
crease indefinitely. Of course, in a wide-band system
a millisecond may be substantially an infinite delay.

In Fig. 6 the function log is plotted
with in dB horizontal and the number of bits
per cycle of band vertical. The circles represent PCM
systems of the binary, ternary, etc., types, using positive
and negative pulses and adjusted to give one error in about

binary digits. The dots are for a PPM system with two,
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Fig. 6. Comparison of PCM and PPM with ideal performance.

three, etc., discrete positions for the pulse.9 The difference
between the series of points and the ideal curve corresponds
to the gain that could be obtained by more involved coding
systems. It amounts to about 8 dB in power over most of
the practical range. The series of points and circles is about
the best that can be done without delay. Whether it is worth
while to use more complex types of modulation to obtain
some of this possible saving is, of course, a question of
relative costs and valuations.

The quantity log is, for large , the
number of bits that can be transmitted in time. It can
be regarded as an exchange relation between the different
parameters. The individual quantities, , , and
can be altered at will without changing the amount of
information we can transmit, provided log is
held constant. If is reduced, must be increased,
etc.

Ordinarily, as we increase , the noise power in the
band will increase proportionally; where is
the noise power per cycle. In this case, we have

log (29)

If we let , i.e., is the band for which the
noise power is equal to the signal power, this can be written

log (30)

In Fig. 7, is plotted as a function of . As
we increase the band, the capacity increases rapidly until
the total noise power accepted is about equal to the signal

9The PCM points are calculated from formulas given in B. M. Oliver,
J. R. Pierce, and C. E. Shannon, “The philosophy of PCM,”Proc. IRE,
vol. 36, pp. 1324–1332, Nov. 1948. The PPM points are from unpublished
calculations of B. McMillan, who points out that, for very smallP=N ,
the points approach to within 3 dB of the ideal curve.

Fig. 7. Channel capacity as a function of bandwidth.

power; after this, the increase is low, and it approaches an
asymptotic value log times the capacity for .

IX. A RBITRARY GAUSSIAN NOISE

If a white thermal noise is passed through a filter whose
transfer function is , the resulting noise has a power
spectrum and is known as Gaussian
noise. We can calculate the capacity of a channel perturbed
by any Gaussian noise from the white-noise result. Suppose
our total transmitter power is and it is distributed among
the various frequencies according to . Then

(31)

We can divide the band into a large number of small
bands, with approximately constant in each. The total
capacity for a given distribution will then be given by

log (32)

since, for each elementary band, the white-noise result
applies. The maximum rate of transmission will be found
by maximizing subject to condition (31). This requires
that we maximize

log (33)

The condition for this is, by the calculus of variations, or
merely from the convex nature of the curve log

(34)

or must be constant. The constant is adjusted
to make the total signal power equal to. For frequencies
where the noise power is low, the signal power should be
high, and vice versa, as we would expect.

The situation is shown graphically in Fig. 8. The curve is
the assumed noise spectrum, and the three lines correspond
to different choices of . If is small, we cannot make

constant, since this would require negative
power at some frequencies. It is easily shown, however,
that in this case the best is obtained by making

constant whenever possible, and making
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Fig. 8. Best distribution of transmitter power.

zero at other frequencies. With low values of, some of
the frequencies will not be used at all.

If we now vary the noise spectrum , keeping the
total noise power constant and always adjusting the signal
spectrum to give the maximum transmission, we can
determine the worst spectrum for the noise. This turns out
to be the white-noise case. Although this only shows it to
be worst among the Gaussian noises, it will be shown later
to be the worst among all possible noises with the given
power in the band.

X. THE CHANNEL CAPACITY WITH AN

ARBITRARY TYPE OF NOISE

Of course, there are many kinds of noise which are not
Gaussian; for example, impulse noise, or white noise that
has passed through a nonlinear device. If the signal is
perturbed by one of these types of noise, there will still
be a definite channel capacity, the maximum rate of
transmission of binary digits. We will merely outline the
general theory here.10

Let be the amplitudes of the noise at
successive sample points, and let

(35)

be the probability that these amplitudes lie between
and , and , etc. Then the function

describes the statistical structure of the noise, insofar as
successive samples are concerned. Theentropy of the

noise is defined as follows. Let

log (36)

Then

(37)

This limit exists in all cases of practical interest, and can
be determined in many of them. is a measure of the
randomness of the noise. In the case of white Gaussian
noise of power , the entropy is

log (38)
10C. E. Shannon, “A mathematical theory of communication,”Bell Syst.

Tech. J., vol. 27, pp. 379–424, July 1948; pp. 623–657, Oct. 1948.

It is convenient to measure the randomness of an arbitrary
type of noise not directly by its entropy, but by comparison
with white Gaussian noise. We can calculate the power in
a white noise having the same entropy as the given noise.
This power, namely

exp (39)

where is the entropy of the given noise, will be called
the entropy powerof the noise.

A noise of entropy power acts very much like a white
noise of power , insofar as perturbing the message is
concerned. It can be shown that the region of uncertainty
about each signal point will have the same volume as the
region associated with the white noise. Of course, it will
no longer be a spherical region. In proving Theorem 1 this
volume of uncertainty was the chief property of the noise
used. Essentially the same argument may be applied for
any kind of noise with minor modifications. The result is
summarized in the following.

Theorem 3: Let a noise limited to the band have
power and entropy power . The capacity is then
bounded by

log log (40)

where is the average signal power and the bandwidth.
If the noise is a white Gaussian noise, , and

the two limits are equal. The result then reduces to the
theorem in Section VII.

For any noise, . This is why white Gaussian
noise is the worst among all possible noises. If the noise is
Gaussian with spectrum , then

exp log (41)

The upper limit in Theorem 3 is then reached when we
are above the highest noise power in Fig. 8. This is easily
verified by substitution.

In the cases of most interest, is fairly large. The
two limits are then nearly the same, and we can use

log as the capacity. The upper limit is the
best choice, since it can be shown that as increases,

approaches the upper limit.

XI. DISCRETE SOURCES OFINFORMATION

Up to now we have been chiefly concerned with the
channel. The capacity measures the maximum rate at
which a random series of binary digits can be transmitted
when they are encoded in the best possible way. In general,
the information to be transmitted will not be in this form.
It may, for example, be a sequence of letters as in teleg-
raphy, a speech wave, or a television signal. Can we find
an equivalent number of bits per second for information
sources of this type? Consider first the discrete case; i.e.,
the message consists of a sequence of discrete symbols. In
general, there may be correlation of various sorts between
the different symbols. If the message is English text, the
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letter is the most frequent, is often followed by ,
etc. These correlations allow a certain compression of the
text by proper encoding. We may define the entropy of
a discrete source in a way analogous to that for a noise;
namely, let

log (42)

where is the probability of the sequence of
symbols , and the sum is over all sequences of
symbols. Then the entropy is

(43)

It turns out that is the number of bits produced by the
source for each symbol of message. In fact, the following
result is proved in the appendix.

Theorem 4: It is possible to encode all sequences of
message symbols into sequences of binary digits in such a
way that the average number of binary digits per message
symbol is approximately , the approximation approaching
equality as increases.

It follows that, if we have a channel of capacity and
a discrete source of entropy, it is possible to encode the
messages via binary digits into signals and transmit at the
rate of the original message symbols per second.

For example, if the source produces a sequence of letters
, , or with probabilities , , ,

and successive letters are chosen independently, then
log log log

and the information produced is equivalent to 1.294 bits
for each letter of the message. A channel with a capacity
of 100 bits per second could transmit with best encoding

message letters per second.

XII. CONTINUOUS SOURCES

If the source is producing a continuous function of time,
then without further data we must ascribe it an infinite rate
of generating information. In fact, merely to specify exactly
one quantity which has a continuous range of possibilities
requires an infinite number of binary digits. We cannot
send continuous informationexactlyover a channel of finite
capacity.

Fortunately, we do not need to send continuous messages
exactly. A certain amount of discrepancy between the orig-
inal and the recovered messages can always be tolerated.
If a certain tolerance is allowed, then a definite finite rate
in binary digits per second can be assigned to a continuous
source. It must be remembered that this rate depends on the
nature and magnitude of the allowed error between original
and final messages. The rate may be described as the rate
of generating informationrelative to the criterion of fidelity.

Suppose the criterion of fidelity is the rms discrepancy
between the original and recovered signals, and that we can
tolerate a value . Then each point in the message space
is surrounded by a small sphere of radius . If
the system is such that the recovered message lies within
this sphere, the transmission will be satisfactory. Hence,

the number of different messages which must be capable
of distinct transmission is of the order of the volume
of the region of possible messages divided by the volume
of the small spheres. Carrying out this argument in detail
along lines similar to those used in Sections VII and IX
leads to the following result.

Theorem 5: If the message source has power, entropy
power , and bandwidth , the rate of generating
information in bits per second is bounded by

log log (44)

where is the maximum tolerable mean square error in
reproduction. If we have a channel with capacityand
a source whose rate of generating informationis less
than or equal to , it is possible to encode the source in
such a way as to transmit over this channel with the fidelity
measured by . If , this is impossible.

In the case where the message source is producing white
thermal noise, . Hence the two bounds are equal
and log . We can, therefore, transmit white
noise of power and band over a channel of band

perturbed by a white noise of power and recover the
original message with mean square error if, and only if

log log (45)

APPENDIX

Consider the possible sequences ofsymbols. Let them
be arranged in order of decreasing probability,

. Let . The th message is encoded
by expanding as a binary fraction and using only the first

places where is determined from

log log (46)

Probable sequences have short codes and improbable ones
long codes. We have

(47)

The codes for different sequences will all be different.
, for example, differs by from , and therefore

its binary expansion will differ in one or more of the first
places, and similarly for all others. The average length

of the encoded message will be . Using (46)

log log (48)

or

(49)

The average number of binary digits used per message
symbol is and

(50)

As , , and , so the average
number of bits per message symbol approaches.
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