Semantic Web (CSC688 P)

Ubbo Visser (Instructor) Saminda Abeyruwan (Research Assistant)

Department of Computer Science
University of Miami

August 25, 2011
1. About us

2. What about you and your expectations

3. General Information

4. What are Semantic Web and technologies?
Ubbo Visser

Short introduction

Research interest

- Artificial Intelligence with the focus on knowledge representation and reasoning.
- Application areas: Semantic Web and Multi-Agent Systems (Games, Robots, RoboCup).

Position

- Research Associate Professor

Stations

- Münster, Brisbane, Bremen
- Miami

Contact information

- Office: Ungar Building, Room No 441
- Phone: 305-284-2254
- Email: visser@cs.miami.edu (preferred)
- Office Hours: by appointment
Short introduction

- **PhD student (Research Assistant)**
- **Advisor**: Dr. Ubbo Visser
- **Research interest**: I am interested in researching in the areas of machine learning, reinforcement learning, probabilistic inferences (Bayesian and Markov networks), and its application to Semantic Web to build autonomous agents.

Contact information

- **Office**: Ungar Building, Room No 414
- **Phone**: 305-457-9753
- **Email**: saminda@cs.miami.edu
- **Office hours**: drop me an email
May we know who you are?

Short introduction

- Are you a MS or a PhD student?
- Which area would you like to specialize in?
- Why did you select this course?
 - *hmm, I am not sure;*
 - *my advisor told me so;*
 - *fascinating topic;*
 - *this is what I want to specialize in;*
 - *I see a big future ahead of this field; . . .*
Grading & general issues

- **Grading:** Final exam (open book) 30%, project 40% and assignments 30% *plus optional extra credits.*

- **Scoring of Homework Assignments:** There will be four mandatory assignments. These assignments are mostly based on the papers, chapters and sections available in the required reading section. Problems will be either theoretical or implementation-based (using ontology tools or API’s). In addition to this, there will be an optional extra credit problem for the determine students. Assignments have variable due dates, and the due dates are available in course website. The score of each homework will be mentioned in it.

- **Class attendance and participation:** Class attendance is not mandatory, although the exams will depend heavily of the lectures. Not all of the material will come from the text. Class participation is also mandatory. However, active interest in lectures is the easiest way to learn.
Keep always these in mind

- **Plagiarism:** The penalty for copied homework of any kind can be immediate failure in the course.

- **My policy on programs is as follows:** There is no reason for two (or more) people handing in identical or nearly identical programs. We will regard such programs as either group-written or simply copied. If we have no hard evidence of copying, such programs will receive NO credit. More serious actions will be taken in cases where there is evidence of cheating.

- **Late programs:** Unless otherwise stated, programs will lose 20% of their value for each weekday (Monday through Friday) that they are late, down to a minimum value of 20%. The due date of a program is the latest date on which it can be run to get full credit.
and also these too ...

- **Dropping the course:** Unless there are extreme extenuating circumstances, we will not allow anyone to drop a course after the drop date. Poor academic performance will never be an acceptable reason for a late drop.

- **Incompletes:** Unless there has been a documentable illness that caused you to miss substantial amounts of class and computer time, we will not give an incomplete grade in this course. Therefore, please do NOT waste our time asking about an incomplete grade unless you have a remarkably good reason.

- **Make-up exams:** We do not give make-up exams. You simply must show up and take them at the specified times.
Part 1 (Introduction)
1. Introduction to Semantic Web/ontologies/applications/research
2. Basic introduction to logic
3. Fast overview of DL/XML/RDF/RDFS/Ontologies/Reasoning (to get started with implementation using Protege, Jena API, and OWLAPI)

Part 2 (Understanding)
1. Description logic basics
2. XML/RDF/RDFS/SPARQL
3. Ontologies $SROIQ^D$
4. Basic reasoning

Part 3 (Design)
1. Ontology building/justification/entailment tools
2. Project week
Schedule

<table>
<thead>
<tr>
<th>Lec.</th>
<th>Week(s)</th>
<th>Topic</th>
<th>Required reading</th>
<th>Assignment</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 (1)</td>
<td>Introduction to SW; ontologies/app./research</td>
<td>[BLHL01]; Ch. 1, 9 (optional but strongly suggested);</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2 (1)</td>
<td>Basic introduction to logic</td>
<td>Appendix C</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3-4 (2)</td>
<td>Overview of DL, XML, RDF, RDFS, ont., and reasoning</td>
<td>[Pol10]; Appendix A; Sec. 2.1, 3.1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>5 (1)</td>
<td>Description logic basics</td>
<td>[BHS03]; Ch. 8</td>
<td>Project proposal</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>6-8 (3)</td>
<td>XML, RDF, RDFS, and SPARQL</td>
<td>Assigned parts of [PS08]; Ch. 2, 3, 7.1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>9 (1)</td>
<td>Ont. \mathcal{SROIQ}^D</td>
<td>[HK506]; Ch. 4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>10 (1)</td>
<td>Basic reasoning</td>
<td>Ch. 5</td>
<td>Project progress report</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>11 (1)</td>
<td>Ont. building, justification, and entailment tools</td>
<td>OwlSight; [KPHS08]</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>12 (1)</td>
<td>Project week</td>
<td>-</td>
<td>Project presentations</td>
<td>-</td>
</tr>
</tbody>
</table>
More information . . .

- **Required book:** We use the *Foundations of Semantic Web Technologies, Chapman & Hall/CRC, 2009* [HKR09] as the official text book of the course.

- **Final project:** Every participants is expected to present a final project at the end of the semester. We strongly recommend that the project is chosen related to your research interests.

We have listed several projects in the handout. In order to keep track on the progress of the project, students are asked to present the current state of the project in two successive intervals. This includes the proposal, and the mid-term progress. More details will be provided during the lectures, and on blackboard.
What is Semantic Web?

WWW

- is a distributed, and a collection of heterogeneous systems.
- contains a huge amount of data with standards to transfer structured data.
- contents are most of the time human readable, and all the time machine-processable.
- **But**, it is very difficult to identify the relationships (semantics/conceptualization) among resources in the web without a human influence.
The basic idea of the Semantic Web

- is to provide a conceptual framework for
 1. **Build models** to capture the complexities of the world with simple methods through abstraction.
 2. **Compute meaningful conclusions** through a reasoning mechanism.
 3. **Communicate** unambiguous complex information through ontologies.

Some warm-up examples...

- BioAssay ontology project
- Semantic information mashup
- Semantic Web challenge
- dbpedia (e.g., Berlin resource)
Basic ideas ...

Building models [Mae02]

- **Concept**
- **Symbol/Word** (Evokes)
- **Refers to** (Stands for)

The meaning triangle
Compute meaningful conclusionsa

ahttp://owl.man.ac.uk/2003/why/latest/

- \textit{cat_owner} ≡ \textit{person} \cap (∃\textit{has_pet}.\textit{cat}) (Cat owners have cat as pets)
- \textit{has_pet} ⊆ \textit{likes} (has pet is a subproperty of likes, so anything that has a pet must like that pet)
- \textit{cat_liker} ≡ \textit{person} \cap (∃\textit{likes}.\textit{cat}) (Cat owners must like a cat)
- Therefore, \textbf{Cat owners like cats.} (Justification: The subclass is inferred due to a subproperty assertion)

We will talk about these matters in detail during the course.
Basic ideas ...
Preparation for assignment #1

What you need to do ...

1. (Mandatory) Read the paper [BLHL01] pages 1-12
2. (Mandatory) Read Chapter 1 of the text book
3. (Optional) Read Chapter 9

Axel Polleres.
Semantic web technologies: From theory to standards.

Eric Prud’hommeaux and Andy Seaborne.
Sparql query language for rdf.